首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Inland waterbodies are often naturally acidic but are these ecosystems pre-adapted to inorganic acidification e.g., by acid sulfate soils (ASS)? We conducted a controlled mesocosm experiment with inorganically acidified wetland water and wetland sediment replicates to pH 3 from a naturally acidic (pH 3.9, conductivity = 74 µS cm− 1) wetland in south-western Australia. Following acidification, dissolved organic carbon and nitrogen declined, and chlorophyll a dropped to zero. Inorganic acidification mobilised metals from sediment sods with increased water concentrations of Cu, Fe, Mn, Ca, Mg and Al. Acidification showed no significant effect on diatom assemblage. Nonetheless, greatly reduced abundance and diversity of grazing zooplankton was observed. Macroinvertebrates generally showed abundance decreases, although filterer-collector taxa increased. Decreased primary production reduced functional diversity and consumer biomasses. These results suggest likely impact to ecosystem functioning of low pH, weakly-buffered and stained wetlands if exposed to inorganic acidification.  相似文献   

2.
The uranium mine in Königstein (Germany) is currently in the process of being flooded. Huge mass of Ferrovum myxofaciens dominated biofilms are growing in the acid mine drainage (AMD) water as macroscopic streamers and as stalactite-like snottites hanging from the ceiling of the galleries. Microsensor measurements were performed in the AMD water as well as in the biofilms from the drainage channel on-site and in the laboratory. The analytical data of the AMD water was used for the thermodynamic calculation of the predominance fields of the aquatic uranium sulfate (UO2SO4) and UO2++ speciation as well as of the solid uranium species Uranophane [Ca(UO2)2(SiO3OH)2?5H2O] and Coffinite [U(SiO4)1 − x(OH)4x], which are defined in the stability field of pH > 4.8 and Eh < 960 mV and pH > 0 and Eh < 300 mV, respectively. The plotting of the measured redox potential and pH of the AMD water and the biofilm into the calculated pH-Eh diagram showed that an aqueous uranium(VI) sulfate complex exists under the ambient conditions. According to thermodynamic calculations a retention of uranium from the AMD water by forming solid uranium(VI) or uranium(IV) species will be inhibited until the pH will increase to > 4.8. Even analysis by Energy-filtered Transmission Electron Microscopy (EF-TEM) and electron energy loss spectroscopy (EELS) within the biofilms did not provide any microscopic or spectroscopic evidence for the presence of uranium immobilization. In laboratory experiments the first phase of the flooding process was simulated by increasing the pH of the AMD water. The results of the experiments indicated that the F. myxofaciens dominated biofilms may have a substantial impact on the migration of uranium. The AMD water remained acid although it was permanently neutralized with the consequence that the retention of uranium from the aqueous solution by the formation of solid uranium species will be inhibited.  相似文献   

3.
Acidification of freshwaters is a global phenomenon, occurring both through natural leaching of organic acids and through human activities from industrial emissions and mining. The West Coast of the South Island, New Zealand, has both naturally acidic and acid mine drainage (AMD) streams enabling us to investigate the response of fish communities to a gradient of acidity in the presence and absence of additional stressors such as elevated concentrations of heavy metals. We surveyed a total of 42 streams ranging from highly acidic (pH 3.1) and high in heavy metals (10 mg L1 Fe; 38 mg L1 Al) to circum-neutral (pH 8.1) and low in metals (0.02 mg L1 Fe; 0.05 mg L1 Al). Marked differences in pH and metal tolerances were observed among the 15 species that we recorded. Five Galaxias species, Anguilla dieffenbachii and Anguillaaustralis were found in more acidic waters (pH< 5), while bluegill bullies (Gobiomorphus hubbsi) and torrentfish (Cheimarrichthys fosteri) were least tolerant of low pH (minimum pH 6.2 and 5.5, respectively). Surprisingly, the strongest physicochemical predictor of fish diversity, density and biomass was dissolved metal concentrations (Fe, Al, Zn, Mn and Ni) rather than pH. No fish were detected in streams with dissolved metal concentrations > 2.7 mg L1 and nine taxa were only found in streams with metal concentrations < 1 mg L1. The importance of heavy metals as critical drivers of fish communities has not been previously reported in New Zealand, although the mechanism of the metal effects warrants further study. Our findings indicate that any remediation of AMD streams which seeks to enable fish recolonisation should aim to improve water quality by raising pH above ≈ 4.5 and reducing concentrations of dissolved Al and Fe to < 1.0 mg L1.  相似文献   

4.
The effects of various factors (N/Cl ratio used to prepare monochloramine, monochloramine doses, pH and contact time) on the monochloramine demand and on the chloroform yield during chloramination of resorcinol have been investigated. Chloramination experiments were carried out at 24 ± 1 °C, at pH values ranging from 6.5 to 12 using a bicarbonate/carbonate buffer and preformed monochloramine solutions prepared at pH 8.5 with N/Cl ratios ([NH4Cl]0/[Total free Cl2]0 ranging from 1.0 to 150 mol/mol). Kinetic experiments ([Resorcinol]0 = 5 or 100 μM, [NH2Cl]0/[Resorcinol]0 = 20 mol/mol, pH = 8.5 ± 0.1) showed a slow increase of the monochloramine consumption with reaction time. The monochloramine demands after reaction times of 7 days ([Resorcinol]0 = 100 μM) and 14 days ([Resorcinol]0 = 5 μM) were equal to 8.5 mol of NH2Cl/mole of resorcinol and were higher than the chlorine demands (≈7.3 mol/mol). Chloroform yields from monochloramination of resorcinol were lower than 8% (<80 mmol of CHCl3/mole of resorcinol) and were less than the yields obtained by chlorination (0.9-0.95 mol/mol). Chloroform productions increased with increasing monochloramine dose and reaction time and decreased with increasing pH values within the pH range 6.5-10. Chloroform formation markedly decreased when the N/Cl ratio increased from 1 to 1.5 mol/mol and was suppressed at N/Cl > 100 mol/mol. The data obtained in the present work suggest that free chlorine released from monochloramine hydrolysis plays a significant role on the formation of chloroform during chloramination of resorcinol at N/Cl ratios close to unity (1.0 < N/Cl < 1.5).  相似文献   

5.
The removal of fluoride from drinking water by the method of adsorption on activated alumina is found superior than other defluoridation techniques mostly due to the strong affinity between aluminium and fluoride. Dissolution of aluminium from the alumina surfaces into its free and hydroxide ions in the aqueous medium is reported to be very low, but the presence of high fluoride concentrations may increase its solubility due to the formation of monomeric aluminium fluoride and aluminium hydroxyl fluoride complexes. An Activated Alumina Defluoridation Model Simulator (AAD) has been developed to represent fluoride adsorption on the basis of the surface complexation theory incorporating aspects of aluminium solubility in presence of high fluoride concentrations and pH variations. Model validations were carried out for residual aluminium concentrations in alumina treated water, by conducting a series of batch fluoride adsorption experiments using activated alumina (grade FB101) treating fluoride concentrations of 1-10 mg/L, at varying pH conditions. The total residual aluminium in the defluoridated water is due to presence of both dissolved and precipitated Al-F complexed forms. The Freundlich adsorption isotherm was found fit for fluoride adsorption capacity versus residual fluoride concentrations for pH = 7.5, and the relationship is given by the linearised equation log (x/m) = log k + (1/n) log Ce with values of k = 0.15 mg/g and 1/n = 0.45 indicating favorable adsorption. The relationship is linear in the region of low fluoride concentrations, but as concentrations of fluoride increased, the formation of the dissolved AlF30 complexes was favored than adsorption on alumina, and hence makes the isotherm nonlinear. The AAD simulations can predict for operating fluoride uptake capacity in order to keep the residual aluminium within permissible limits in the alumina treated water.  相似文献   

6.
The effect of chemical oxygen demand/sulfate (COD/SO42−) ratio on fermentative hydrogen production using enriched mixed microflora has been studied. The chemostat system maintained with a substrate (glucose) concentration of 15 g COD L−1 exhibited stable H2 production at inlet sulfate concentrations of 0-20 g L−1 during 282 days. The tested COD/SO42− ratios ranged from 150 to 0.75 (with control) at pH 5.5 with hydraulic retention time (HRT) of 24, 12 and 6 h. The hydrogen production at HRT 6 h and pH 5.5 was not influenced by decreasing the COD/SO42− ratio from 150 to 15 (with control) followed by noticeable increase at COD/SO42− ratios of 5 and 3, but it was slightly decreased when the COD/SO42− ratio further decreased to 1.5 and 0.75. These results indicate that high sulfate concentrations (up to 20,000 mg L−1) would not interfere with hydrogen production under the investigated experimental conditions. Maximum hydrogen production was 2.95, 4.60 and 9.40 L day−1 with hydrogen yields of 2.0, 1.8 and 1.6 mol H2 mol−1 glucose at HRTs of 24, 12 and 6 h, respectively. The volatile fatty acid (VFA) fraction produced during the reaction was in the order of butyrate > acetate > ethanol > propionate in all experiments. Fluorescence In Situ Hybridization (FISH) analysis indicated the presence of Clostridium spp., Clostridium butyricum, Clostridium perfringens and Ruminococcus flavefaciens as hydrogen producing bacteria (HPB) and absence of sulfate reducing bacteria (SRB) in our study.  相似文献   

7.
A study was conducted to assess the potential of nitrate-nitrogen (NO3-N) and fluoride (F) contamination in drinking groundwater as a function of lithology, soil characteristics and agricultural activities in an intensively cultivated district in India. Two hundred and fifty two groundwater samples were collected at different depths from various types of wells and analyzed for pH, electrical conductivity (EC), NO3-N load and F content. Database on lithology, soil properties, predominant cropping systems, fertilizer and pesticide uses were also recorded for the district. The NO3-N load in groundwater samples were low ranging from 0.12 to 6.58 μg mL− 1 with only 8.7% of them contained greater than 3.0 μg mL− 1 well below the 10 μg mL− 1, the threshold limit fixed by WHO for drinking purpose. Samples from the habitational areas showed higher NO3-N content over the agricultural fields. The content decreased with increasing depth of wells (r = − 0.25, P ≤ 0.01) and increased with increasing rate of nitrogenous fertilizer application (r = 0.90, P ≤ 0.01) and was higher in areas where shallow- rather than deep-rooted crops (r = − 0.28, = ≤ 0.01, with average root depth) are grown. The NO3-N load also decreased with increasing bulk density (r = − 0.73, P ≤ 0.01) and clay content (r = − 0.51, P ≤ 0.01) but increased with increasing hydraulic conductivity (r = 0.68, P ≤ 0.01), organic C (r = 0.78, P ≤ 0.01) and potential plant available N (r = 0.82, P ≤ 0.01) of soils. Fluoride content in groundwater was also low (0.02 to 1.15 μg mL− 1) with only 4.0% of them exceeding 1.0 μg mL− 1 posing a potential threat of fluorosis. On average, its content varied little spatially and along depth of sampling aquifers indicating little occurrence of F containing rocks/minerals in the geology of the district. The content showed a significant positive correlation (r = 0.234, = ≤ 0.01) with the amount of phosphatic fertilizer (single super phosphate) used for agriculture. Results thus indicated that the groundwater of the study area is presently safe for drinking purpose but some anthropogenic activities associated with intensive cultivation had a positive influence on its loading with NO3-N and F.  相似文献   

8.
Previous exposure studies have shown considerable inter-subject variability in personal-ambient associations. This paper investigates exposure factors that may be responsible for inter-subject variability in these personal-ambient associations. The personal and ambient data used in this paper were collected as part of a personal exposure study conducted in Boston, MA, during 1999-2000. This study was one of a group of personal exposure panel studies funded by the U.S. Environmental Protection Agency's National Exposure Research Laboratory to address areas of exposure assessment warranting further study, particularly associations between personal exposures and ambient concentrations of particulate matter and gaseous co-pollutants. Twenty-four-hour integrated personal, home indoor, home outdoor and ambient sulfate, elemental carbon (EC), PM2.5, ozone (O3), nitrogen dioxide (NO2) and sulfur dioxide were measured simultaneously each day. Fifteen homes in the Boston area were measured for 7 days during winter and summer. A previous paper explored the associations between personal-indoor, personal-outdoor, personal-ambient, indoor-outdoor, indoor-ambient and outdoor-ambient PM2.5, sulfate and EC concentrations. For the current paper, factors that may affect personal exposures were investigated, while controlling for ambient concentrations. The data were analyzed using mixed effects regression models. Overall personal-ambient associations were strong for sulfate during winter (p < 0.0001) and summer (p < 0.0001) and PM2.5 during summer (p < 0.0001). The personal-ambient mixed model slope for PM2.5 during winter but was not significant at p = 0.10. Personal exposures to most pollutants, with the exception of NO2, increased with ventilation and time spent outdoors. An opposite pattern was found for NO2 likely due to gas stoves. Personal exposures to PM2.5 and to traffic-related pollutants, EC and NO2, were higher for those individuals living close to a major road. Both personal and indoor sulfate and PM2.5 concentrations were higher for homes using humidifiers. The impact of outdoor sources on personal and indoor concentrations increased with ventilation, whereas an opposite effect was observed for the impact of indoor sources.  相似文献   

9.
Irene Jubany 《Water research》2009,43(11):2761-2772
Partial nitrification (ammonium oxidation to nitrite) has gained a lot of interest among researchers in the last years because of its advantages with respect to complete nitrification (ammonium oxidation to nitrate): decrease of oxygen requirements for nitrification, reduction of COD demand and CO2 emissions during denitrification and higher denitrification rate and lower biomass production during anoxic growth.In this study, an extremely high-strength ammonium wastewater (3000-4000 mg N L−1) was treated in a continuous pilot plant with a configuration of three reactors in series plus a settler. The system was operated under the maximum possible volumetric nitrogen loading rate, at mild temperature (around 25 °C), with high sludge retention time (around 30 d) and significant nitrifying biomass concentration (average of 1800 ± 600 mg VSS L−1). The implemented control loops transformed the system, which was operating with complete nitrification, into a continuous partial nitrification system. Nitrite oxidizing bacteria (NOB) washout was accomplished with local control loops for pH and dissolved oxygen (DO) with proper setpoints for NOB inhibition (pH = 8.3 and DO = 1.2-1.9 mg O2 L−1) and with an inflow control loop based on Oxygen Uptake Rate (OUR) measurements, which allowed working at the maximum ammonium oxidation capacity of the pilot plant in each moment. This operational strategy maximized the difference between ammonia oxidizing bacteria (AOB) and NOB growth rates, which is the key point to achieve a fast and stable NOB washout. The results showed a stable operation of the partial nitrification system during more than 100 days and NOB washout was corroborated with fluorescence in-situ hybridization (FISH) analysis.  相似文献   

10.
The Lake Wabamun area, in Alberta, is unique within Canada as there are four coal-fired power plants within a 500 km2 area. Continuous monitoring of ambient total gaseous mercury (TGM) concentrations in the Lake Wabamun area was undertaken at two sites, Genesee and Meadows. The data were analyzed in order to characterise the effect of the coal-fired power plants on the regional TGM. Mean concentrations of 1.57 ng/m3 for Genesee and 1.50 ng/m3 for Meadows were comparable to other Canadian sites. Maximum concentrations of 9.50 ng/m3 and 4.43 ng/m3 were comparable to maxima recorded at Canadian sites influenced by anthropogenic sources. The Genesee site was directly affected by the coal-fired power plants with the occurrence of northwest winds, and this was evident by episodes of elevated TGM, NOx and SO2 concentrations. NOx/TGM and SO2/TGM ratios of 21.71 and 19.98 µg/ng, respectively, were characteristic of the episodic events from the northwest wind direction. AERMOD modeling predicted that coal-fired power plant TGM emissions under normal operating conditions can influence hourly ground-level concentrations by 0.46-1.19 ng/m3. The effect of changes in coal-fired power plant electricity production on the ambient TGM concentrations was also investigated, and was useful in describing some of the episodes.  相似文献   

11.
A whole-lake hypolimnetic Ca(OH)2 addition, that induced calcium carbonate precipitation, combined with deep water aeration has been applied to eutrophic Lake Luzin, Germany during 1996-1998. In this study we investigated the dynamic of phosphorus and its binding forms in seston and sediment before and during the treatment. The sedimentation rates of phosphorus increased within three years of induced calcite precipitation. The phosphorus binding forms shifted to the calcite-bound phosphorus in the settling matter. The increase of calcite-bound P in the settling material did not coincide with the maximum induced CaCO3-precipitation caused by the hypolimnetic addition of Ca(OH)2. An impact of chemicals additions and pH on phosphorus binding forms in seston and surface sediments has been studied in laboratory experiments with sediment core incubations and slurry experiments.Laboratory studies showed that the lowest phosphorus flux from sediment was related to the experiment with pH = 7 in overlaying water adjusted with Ca(OH)2. The adjusting of pH with Ca(OH)2 leads to a lower P flux of 2.3 mg P m−2 d−1, while the highest P-flux is attributed to the experiment with the pH which was adjusted with NaOH. Phosphorus fraction which reflects phosphorus binding on carbonates in surface sediments increased within one year of treatment, enhancing the phosphorus retention capacity of sediments.  相似文献   

12.
In this paper, the application of Fenton and Oxone/Co2+ oxidation processes for landfill leachate treatment was investigated. The removal of the chemical oxygen demand (COD), suspended substances (SS) and the color of the landfill leachate by Fenton oxidation to that by Oxone/Co2+ oxidation were compared under optimal operational conditions. For Fenton oxidation process, the optimal conditions were determined as: [H2O2] = 80 mmol L−1, [H2O2]/[Fe2+] = 2.0, initial pH = 2.5, reaction temperature = 37.5 ± 1 °C, reaction time = 160 min, number of stepwise addition = 3. Under the given conditions, 56.9% of the COD removal efficiency was achieved, but the SS and the color of the treated landfill leachate increased due to the generation of a large quantity of ferric hydroxide sludge. In reference to Oxone/Co2+ oxidation process, the optimal conditions were determined as: [Oxone] = 4.5 mmol L−1, [Oxone]/[Co2+] = 104, pH = 6.5, reaction temperature = 30 ± 1 °C, reaction time = 300 min, number of stepwise addition = 7, the COD, SS and the color removal efficiencies were 57.5, 53.3 and 83.3%, respectively. From this work, it can be concluded that Oxone/Co2+ oxidation process demonstrated higher degradation efficiencies of the COD, SS and color for landfill leachate treatment than that by Fenton oxidation process. It also suggested that Oxone/Co2+ oxidation process could be considered as one of the most promising technologies for practical applicability to treat landfill leachate in large scale. For further improving the efficiency of Oxone/Co2+ oxidation process, we proposed that combination of it with other technologies in future such as ultraviolet, ultrasound and biological methods.  相似文献   

13.
Patterns of storm runoff chemistry from a wollastonite (calcium-silicate mineral, CaSiO3) treated watershed (W1) were compared with a reference watershed (W6) at the Hubbard Brook Experimental Forest (HBEF) in New Hampshire (NH), USA to investigate the role of Ca2+ supply in the acid–base status of stream chemistry. In the summer of 2003, six storm events were studied in W1 and W6 to evaluate the effects of the wollastonite treatment on the episodic acidification of stream waters. Although mean values of Ca2+ concentrations decreased slightly from 33.8 to 31.7 μmol/L with increasing stream discharge in W1 during the events, the mean value of acid neutralizing capacity (ANC) was positive (1.2 μeq/L) during storm events, compared to negative values (− 0.2 μeq/L) in W6. This pattern is presumably due to enhanced Ca2+ supply in W1 (20.7 to 29.0% of dissolved Ca2+ derived from the added wollastonite) to stream water as a result of interflow along shallow flowpaths. In addition, the application of wollastonite increased pH and dissolved silica (H4SiO4) concentrations, and decreased the concentration of inorganic monomeric Al (Ali) in W1 in comparison with W6 during storm events. Despite an increase in SO42− concentration, likely due to desorption of sulfate from soil after the treatment, the watershed showed an increase in ANC compared to the reference watershed, serving to mitigate episodic acidification.  相似文献   

14.
Rainwater harvesting (RWH) offers considerable potential as an alternative water supply. In this study, all of the harvested rainwater samples met the requirements for grey water but not for drinking water. In terms of microbiological parameters, total coliform (TC) and Escherichia coli (EC) were measured in 91.6% and 72%, respectively, of harvested rainwater samples at levels exceeding the guidelines for drinking water, consistent with rainfall events. In the case of the reservoir water samples, TC and EC were detected in 94.4% and 85.2%, respectively, of the samples at levels exceeding the guidelines for drinking water. Both indicators gradually increased in summer and fall. The highest median values of both TC and EC were detected during the fall. Chemical parameters such as common anions and major cations as well as metal ions in harvested rainwater were within the acceptable ranges for drinking water. By contrast, Al shows a notable increase to over 200 μg L− 1 in the spring due to the intense periodic dust storms that can pass over the Gobi Desert in northern China. In terms of statistical analysis, the harvested rainwater quality showed that TC and EC exhibit high positive correlations with NO3 (ρTC = 0.786 and ρEC = 0.42) and PO4 (ρTC = 0.646 and ρEC = 0.653), which originally derive from catchment contamination, but strong negative correlations with Cl (ρTC = − 0.688 and ρEC = − 0.484) and Na+ (ρTC = − 0.469 and ρEC = − 0.418), which originate from seawater.  相似文献   

15.
Chlorophenols are used worldwide as broad-spectrum biocides and fungicides. They have half-life times in water from 0.6 to 550 h and in sediments up to 1700 h and, due to their numerous origins, they can be found in wastewaters, groundwaters or soils. Moreover, chlorophenols are not readily biodegradable.Recently, classic Advanced Oxidation Processes (AOP) have been proposed for their abatement in an aqueous solution. This paper investigates the oxidation of 2,4-dichlorophenol and 3,4-dichlorophenol, at starting concentrations of 6.1 · 10−5 mol L−1, in aqueous solutions through Fe(III)/O2 homogeneous photocatalysis under UV light (303 ÷ 366 nm). The Fe(III)/O2 homogeneous photocatalysis is less expensive than using H2O2 due to the capability of Fe(III) to produce OH radicals, if irradiated with an UVA radiation, and of oxygen to re-oxidize ferrous ions to ferric ones when dissolved in solution. The results show that the best working conditions, for both compounds, are found for pH = 3.0 and initial Fe(III) concentration equal to 1.5·10−4 mol L−1 although the investigated oxidizing system can be used even at pH close to 4.0 but with slower abatement kinetics. Toxicity assessment on algae indicates that treated solutions of 2,4-dichlorophenol are less toxic on algae Pseudokirchneriella subcapitata if compared to not treated solutions whereas in the case of 3,4-dichlorophenol only the samples collected during the runs at 20 and 60 min are capable of inhibiting the growth of the adopted organism.The values of the kinetic constant for the photochemical re-oxidation of iron (II) to iron (III) and for HO attack to intermediates are evaluated by a mathematical model for pH range of 2.0-3.0 and initial Fe(III) concentrations range of 1.5 · 10−5-5.2 · 10−4 mol L−1.  相似文献   

16.
We studied acid-sensitive organisms in Lake Saudlandsvatn in southernmost Norway in relation to acidification: brown trout (Salmo trutta), the caddisfly Hydropsyche siltalai and the zooplankter Daphnia longispina. The study lake was highly acidified with episodic pH depressions <5.0 in the 1970s and 1980s, and sulphur (S) deposition five times greater than the critical load. Chemical recovery following reduced deposition of S became evident in the late 1990s, when the pH increased to 5.5-6.0. By 2000, S deposition had decreased to the critical load. The lake sustained a good brown trout population until the early 1980s, but then it started to decline and nearly went extinct ten years later. Severe recruitment failures were found in most years prior to 1995, both in the inlet and outlet stream. However, since 2003 a marked recovery of the brown trout population has occurred in the lake. During the 1980s, the H. siltalai disappeared from the lake tributaries. In 1996, the species reappeared, and increased highly in abundance from 2000 and onwards. The first post-acidification record of D. longispina from net hauls in Lake Saudlandsvatn was in 2002. Palaeolimnological data confirmed their presence prior to acidification. Any significant recovery in all three organism groups coincided with an acid-neutralizing capacity (ANC) of > 20 μeq L− 1 and toxic inorganic aluminium of < 30 μg L− 1. Projections made with the MAGIC model indicate that unless further reductions in deposition of S are made, the ANC will fluctuate around the ANC survival threshold for the biological elements described. Thus, full biological recovery will not occur in the near future.  相似文献   

17.
Rhizosphere acidification of faba bean, soybean and maize   总被引:2,自引:0,他引:2  
Interspecific facilitation on phosphorus uptake was observed in faba bean/maize intercropping systems in previous studies. The mechanism behind this, however, remained unknown. Under nitrate supply, the difference in rhizosphere acidification potential was studied by directly measuring pH of the solution and by visualizing and quantifying proton efflux of roots between faba bean (Vicia faba L. cv. Lincan No.5), soybean (Glycine max L. cv. Zhonghuang No. 17) and maize (Zea mays L. cv. Zhongdan No.2) in monoculture and intercrop, supplied without or with 0.2 mmol L− 1 P as KH2PO4. The pH of the nutrient solution grown faba bean was lower than initial pH of 6.0 from day 1 to day 22 under P deficiency, whereas the pH of the solution with maize was declined from day 13 after treatment. Growing soybean increased solution pH irrespective of P supply. Under P deficiency, the proton efflux of faba bean both total (315.25 nmol h− 1 plant− 1) and specific proton efflux (0.47 nmol h− 1 cm− 1) was greater than that those of soybean (21.80 nmol h− 1 plant− 1 and 0.05 nmol h− 1 cm− 1, respectively). Faba bean had much more ability of rhizosphere acidification than soybean and maize. The result can explain partly why faba bean utilizes sparingly soluble P more effectively than soybean and maize do, and has an important implication in understanding the mechanism behind interspecific facilitation on P uptake by intercropped species.  相似文献   

18.
Peng Ye 《Water research》2009,43(5):1303-1312
The adsorption and degradation of 4,6-o-dinitrocresol (DNOC) and p-nitrophenol (PNP) in SWy-2 montmorillonite clay slurry were investigated. The pH and type of cation of the slurry were varied. Results showed that adsorption of DNOC and PNP increased at lower pH values, and when pH < pKa (4.4) of DNOC, DNOC was almost completely adsorbed on the clay under given experimental conditions. The specific cation also had a significant effect on adsorption, which was dramatically enhanced in the presence of K+ and NH4+, compared with the presence of Na+ or Ca2+. Anodic Fenton treatment (AFT) degradation of DNOC and PNP in the clay slurry was studied, and it was found that DNOC degradation rates were greatly affected by the initial pH and the types of electrolytes. Due to the higher adsorption, the degradation rate substantially decreased in the clay slurry system in the presence of K+ and low pH, with a large amount of DNOC residue remaining after 60 min treatment. AFT degradation of PNP was completed within 30 min treatment. Based on LC-MS data, a DNOC degradation pathway was proposed. Overall, the results showed the inhibition effect of adsorption on the degradation of nitroaromatic compounds in montmorillonite clay slurry by AFT, providing important implications for water and soil remediation.  相似文献   

19.
This paper reports on cork boiling and bleaching wastewaters treatment by solar photocatalytic processes, TiO2/UV and Fe2+/H2O2/UV (TiO2-only for bleaching wastewater), in a pilot plant with compound parabolic collectors. The photo-Fenton reaction (k = 0.12 L/kJUVr0 = 59.4 mg/kJUV) is much more efficient that TiO2 photocatalysis and TiO2 + S2O82− (k = 0.0024 L/kJUV, r0 = 1.36 mg/kJUV), leading to 94% mineralization of the bleaching wastewater after 31.5 kJUV/L, consuming 77.1 mM of H2O2 (3.0 mmol/kJUV) and using 20 mg/L of iron. For the cork boiling wastewater, after a slow initial reaction rate, the DOC degradation curve shows a first-order kinetics behaviour (k = 0.015 L/kJUV, r0 = 20.8 mg/kJUV) until 173 kJUV/L (≈300 mg C/L). According to the average oxidation state (AOS), toxicity profiles, respirometry and kinetic results obtained in two solar CPCs plants, the optimal energy dose estimated for phototreatment to reach a biodegradable effluent is 15 kJUV/L and 114 kJUV/L, consuming 33 mM and 151 mM of H2OT:/PGN/ELSEVIER/WR/web/00007490/2, achieving almost 49% and 48% mineralization of the wastewaters, respectively for the cork bleaching and boiling wastewaters.  相似文献   

20.
A number of environmental factors have been shown to influence the dynamics of Hg in aquatic ecosystems. Here we investigate the influence of fish size, pH, dissolved organic carbon (DOC), and the availability of potential methylation sites (floodplain forests and hydromorphic soils) on the concentration of total Hg in two carnivorous fishes: Cichla spp. and Hoplias malabaricus in the Negro River, Brazil. Fish and water samples for chemical analysis were collected from 33 sites in the Negro basin. The percentage of alluvial floodplains and hydromorphic soils (potential methylation sites) in the drainage basin upstream from each sampling point was estimated from radar imagery and existing soil maps with GIS. The average of Hg concentrations were 0.337 ppm (SD = 0.244) in Cichla spp. and 0.350 ppm (SD = 0.250) in H. malabaricus. Although the study area was geographically isolated from most major anthropogenic Hg sources, over 18% of Cichla spp. and 29% of H. malabaricus had Hg concentrations above 0.5 ppm, indicating naturally high background levels of Hg. Hg concentrations increased with size in both Cichla spp. (r2 = 0.664, p = 0.000) and H. malabaricus (r2 = 0.299, p = 0.000). Hg concentrations in H. malabaricus also increased with percent floodable area (p = 0.006), pH (p = 0.000) and DOC (0,063). In Cichla spp, Hg increased only in relation to percent floodable area (p = 0.000). Hydromorphic soils did not influence fish Hg.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号