首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Removal of seven active pharmaceutical substances (ibuprofen, ketoprofen, naproxen, diclofenac, clofibric acid, mefenamic acid, and gemfibrozil) was assessed by batch experiments, with suspended biofilm carriers and activated sludge from several full-scale wastewater treatment plants. A distinct difference between nitrifying activated sludge and suspended biofilm carrier removal of several pharmaceuticals was demonstrated. Biofilm carriers from full-scale nitrifying wastewater treatment plants, demonstrated considerably higher removal rates per unit biomass (i.e. suspended solids for the sludges and attached solids for the carriers) of diclofenac, ketoprofen, gemfibrozil, clofibric acid and mefenamic acid compared to the sludges. Among the target pharmaceuticals, only ibuprofen and naproxen showed similar removal rates per unit biomass for the sludges and biofilm carriers. In contrast to the pharmaceutical removal, the nitrification capacity per unit biomass was lower for the carriers than the sludges, which suggests that neither the nitrite nor the ammonia oxidizing bacteria are primarily responsible for the observed differences in pharmaceutical removal. The low ability of ammonia oxidizing bacteria to degrade or transform the target pharmaceuticals was further demonstrated by the limited pharmaceutical removal in an experiment with continuous nitritation and biofilm carriers from a partial nitritation/anammox sludge liquor treatment process.  相似文献   

2.
An analytical method for phenolic endocrine disrupting chemicals and acidic pharmaceuticals in river water was developed using gas chromatography mass spectrometry (GC-MS) coupled with negative chemical ionization (NCI) technique, and used for the determination of these compounds in the Pearl Rivers (Liuxi, Zhujiang and Shijing Rivers). Derivatization using pentafluorobenzoyl chloride (PFBOCl) and pentafluorobenzyl bromide (PFBBr) before GC-MS analysis were applied and optimized for phenolic compounds and acidic compounds, respectively. The target compounds were analyzed for river waters from the upstream to downstream of the Pearl Rivers. Phenolic compounds 4-tert-octylphenol (4-t-OP), 4-nonylphenol (4-NP), bisphenol-A (BPA), estrone (E1), estradiol (E2) and triclosan (TCS) were detected at trace or low levels in the water samples from Liuxi River and Zhujiang River. Diethylstilbestrol (DES) was not detected in the Pearl Rivers. The highest concentrations of the phenolic compounds were found in Shijing River, and they were 3150 ng/L for 4-t-OP, 11,300 ng/L for 4-NP, 1040 ng/L for BPA, 79 ng/L for E1, 7.7 ng/L for E2 and 355 ng/L for TCS, respectively. Only a few acidic pharmaceuticals were detected at low concentrations in water from Liuxi River and Zhujiang River, but the highest concentrations for the acidic pharmaceuticals were also found in Shijing River. The highest concentrations detected for clofibric acid, ibuprofen, gemfibrozil, naproxen, mefenamic acid and diclofenac were 17 ng/L, 685 ng/L, 19.8 ng/L, 125 ng/L, 24.6 ng/l and 150 ng/L, respectively. The results suggest Liuxi and Zhujiang Rivers are only slightly contaminated and can be used as drinking water sources, but Shijing River is heavily polluted by the wastewater from nearby towns.  相似文献   

3.
The occurrence of five acidic pharmaceuticals, ibuprofen, naproxen, ketoprofen, diclofenac and bezafibrate, in seven different sewage treatment plants (STP) and three receiving waters were determined. The analytical procedure included solid phase extraction, liquid chromatographic separation and detection by a triple-quadrupole mass spectrometer. The studied pharmaceuticals were found in all the STPs. The pattern of the occurrence of individual compounds was the same in every STP and matched the consumption figures reported in the literature. Ibuprofen is the most used pharmaceutical in Finland and was accordingly found to be the most abundant compound in the raw sewage. In the treatment processes, the highest removal rate was observed for ibuprofen and the lowest for diclofenac, 92%+/-8% and 26%+/-17%, respectively. Due to the incomplete removal in the STPs, the pharmaceuticals were found in rivers at the discharge points of the STP effluents. Downstream from the discharge points, the concentrations decreased significantly mainly due to dilution in the river water. The risk to the aquatic environment was estimated by a ratio of measured environmental concentration (MEC) and predicted no-effect concentration (PNEC). At the concentrations the compounds were found in the surface waters, they should not pose risk for the aquatic environment. However, at dry seasons and/or during malfunctions of STPs, ibuprofen could be associated with a risk in small river systems.  相似文献   

4.
A scoping study was conducted to investigate the residues of nineteen pharmaceuticals and personal care products (PPCPs), including 4 natural and 3 synthetic steroid estrogens, 7 endocrine-disrupting phenols, and 5 acid pharmaceuticals in three urban streams and the Major Pearl River at Guangzhou, a megapolis in the Pearl River Delta, South China. Estrone was detected in >60% water samples with a maximum concentration of 65 ng L(-1). Endocrine-disrupting phenols (nonylphenol, bisphenol A, triclosan, 2-phenylphenol, methyparaben, and propylparaben) were found to be widely present at rather high concentrations in the urban riverine water of Guangzhou. Salicylic acid, clofibric acid and ibuprofen were detected in most water samples with maximum concentrations of 2098, 248 and 1417 ng L(-1) respectively, whereas naproxen was less frequently detected and also at lower concentration. Both the detection frequencies and median concentrations of the PPCPs appeared higher during the low-flow season than during the high-flow season. The seasonal difference in PPCPs occurrence was probably attributed to the dilution effect caused by the rainfall. PPCPs in the urban riverine water of Guangzhou originated mainly from random discharge and/or leakage of municipal wastewater. PPCPs contamination in the Major Pearl River may be of a potential environmental issue, especially during the low-flow season.  相似文献   

5.
The occurrence and removal rate of seven pharmaceuticals (ibuprofen, naproxen, diclofenac, fluoxetine, ofloxacin, norfloxacin, ciprofloxacin), two metabolites (norfluoxetine, clofibric acid), one degradation product (4-isobutylacetophenone) and 3 estrogens (17α-ethinylestradiol, 17β-estradiol, estrone) were studied in the inlet and outlet of a tertiary sewage treatment plant (STP) in Sweden as well as between different treatment steps in the STP which includes a conventional activated sludge step. Pharmaceuticals in raw household and raw hospital sewage streams leading to the STP were as well investigated. Hydraulic retention times (HRT) of each treatment step was considered for sampling and for the calculation of the removal rates. These rates were above 90%, except for diclofenac, clofibric acid, estrone and ofloxacin. However, only diclofenac and naproxen showed significant effluent loads (> 145 mg/d/1000 inh). Diclofenac was not eliminated during the treatment and in fact even higher concentrations were found at the effluent than in the inlet of the STP. 17α-Ethinylestradiol was not detected in any of the samples. Results indicate that a STP such as the one in Kristianstad, Sweden, with a tertiary treatment is sufficient to remove significantly most of the investigated pharmaceuticals. The chemical treatment improved the removal of several pharmaceuticals especially the antibiotics, which showed step removal rates between 55 and 70%. The expected concentration levels of the pharmaceuticals in the surface water (dilution 1 to 10) close to the outlet of the STP are below the no-observed effect-concentration (NOEC). However, despite that this would imply no important effects in the aquatic environment one cannot rule out negative consequences nearby the STP because most of the NOEC values are derived from acute toxicity data. This may underestimate the real impact of pharmaceuticals in the aquatic ecosystem.  相似文献   

6.
This paper presents the results of a survey of the wastewater effluent and surface waters of the lower river Tyne, UK. Samples were analysed by reversed-phase high-performance liquid chromatography-electrospray tandem mass spectrometry following solid phase extraction, for the presence of 13 pharmaceuticals selected from the priority lists of the UK Environment Agency and the Oslo and Paris Commission (OSPAR). The pharmaceutical compounds measured were acetyl-sulfamethoxazole, clofibric acid, clotrimazole, dextropropoxyphene, diclofenac, erythromycin, ibuprofen, mefenamic acid, paracetamol, propranolol, sulfamethoxazole, tamoxifen and trimethoprim. Of the wastewater treatment works (WTW) samples (n=9) analysed, all compounds except sulfamethoxazole and acetyl-sulfamethoxazole were detected at concentrations ranging from 11 to 69,570 ng l(-1) (in raw effluent). In the surface water samples (n=18), clotrimazole, dextropropoxyphene, erythromycin, ibuprofen, propranolol, tamoxifen and trimethoprim were detected at concentrations ranging from 4 to 2370 ng l(-1). Results of this study show that various pharmaceutical compounds are effectively reduced during their passage through a tertiary wastewater treatment works, whilst others are sufficiently persistent to occur in estuarine systems.  相似文献   

7.
In this article, the results of three years monitoring of selected pharmaceuticals (diclofenac, ibuprofen, carbamazepine, salicylic acid, clofibric acid) in the wastewaters of the Czech Republic are presented. The monitoring was performed on selected Wastewater Treatment Plants (WWTP) with various treatment technology and designed capacity. The concentrations and treatment efficiency of these substances were observed in various profiles of each WWTP, including influent, mechanical pretreatment, biological treatment, effluent. The main processes of removing selected pharmaceuticals during wastewater treatment are discussed. These results are used for design wastewater treatment technology with improved treatment efficiency of these substances.  相似文献   

8.
The occurrence of 12 selected pharmaceutical compounds and pharmaceutical compound metabolites in sewage treatment works (STW) effluents and surface waters was investigated. The substances selected for the monitoring programme were identified by a risk ranking procedure to identify those substances with the greatest potential to pose a risk to the aquatic environment. STW final effluent and surface water samples were collected from Corby, Great Billing, East Hyde, Harpenden and Ryemeads STWs. Ten of the 12 pharmaceutical compounds were detected in the STW effluent samples: propranolol (100%, median = 76 ng/l), diclofenac (86%, median = 424 ng/l), ibuprofen (84%, median = 3086 ng/l), mefenamic acid (81%, median = 133 ng/l), dextropropoxyphene (74%, median = 195 ng/l), trimethoprim (65%, 70 ng/l), erythromycin (44%, < 10 ng/l), acetyl-sulfamethoxazole (33%, median =< 50 ng/l), sulfamethoxazole (9%, median =< 50 ng/l), tamoxifen (4%, median =< 10 ng/l). In the corresponding receiving streams, fewer compounds and lower concentrations were found: propranolol (87%, median = 29 ng/l), ibuprofen (69%, median = 826 ng/l), mefenamic acid (60%, median = 62 ng/l), dextropropoxyphene (53%, median = 58 ng/l), diclofenac (47%, median =< 20 ng/l), erythromycin (38%, median =< 10 ng/l), trimethoprim (38%, median =< 10 ng/l), acetyl sulfamethoxazole (38%, median =< 50 ng/l). Four human pharmaceutical compounds were detected in samples upstream of the STWs sampled: ibuprofen (57%, median = 181 ng/l), trimethoprim (36%, median < 10 ng/l), erythromycin (17%, median =< 10 ng/l), propranolol (14%, median =< 10 ng/l), suggesting that longer range stream transport of some compounds is possible. The particular STW that was sampled and the month that it was sampled significantly influenced the measured concentrations of several, but not all, substances. There was no significant relationship between usage data and the overall frequency with which different substances were detected. There was however, some evidence to suggest that usage data are positively associated with concentrations of pharmaceuticals in effluent and, particularly, with concentrations measured in surface waters below STWs. These results suggest that most sewage treatment works in England and Wales are likely to be routinely discharging small quantities of pharmaceuticals into UK rivers. None of the pharmaceuticals were found at concentrations that were high enough to cause acute toxic impacts to aquatic organisms. However, insufficient data were available to be able to comment on whether the concentrations measured have the potential to result in more subtle long-term effects on aquatic organisms (e.g. effects on growth, ability to reproduce).  相似文献   

9.
The degradation of seven acidic drugs and two metabolites during chlorination was investigated by liquid chromatography-mass spectrometry (LC-MS). A triple-quadrupole (QqQ) system was used to follow the time course of the pharmaceuticals and by-products, while a quadrupole time-of-flight (Q-TOF) system was also used for the identification of the by-products. Under strong chlorination conditions (10 mg/L Cl2, 24 h), only four of the target compounds were significantly degraded: salicylic acid, naproxen, diclofenac and indomethacine. The degradation kinetics of these four compounds were investigated at different concentrations of chlorine, bromide and pH by means of a Box-Behnken experimental design. Depending on these factors, measured pseudo-first order half-lives were in the ranges: 23-573 h for salicylic acid, 13-446 min for naproxen, 5-328 min for diclofenac and 0.4-13.4 min for indomethacine. Also, it was observed that chlorine concentration was the overall most significant factor, followed by the bromide concentration (except for indomethacine), resulting in increased degradation kinetics as they are increased. The degradation path of salicylic acid, naproxen and diclofenac consisted of aromatic substitution of one or two hydrogens by chlorine and/or bromide. Moreover, for diclofenac, two other by-products corresponding to a decarboxylation/hydroxylation pathway from the monohalogenated products were also identified. On the other hand, indomethacine degradation did not lead to halogenation products but to oxidation ones. The investigation of these by-products in real samples by LC-MS/MS (QqQ) showed that the halogenated derivates of salicylic acid occurred in all the drinking water and wastewater samples analysed.  相似文献   

10.
The biodegradation of three active compounds of pharmaceuticals clofibric acid, ibuprofen, and diclofenac was investigated in short-term tests with a pilot sewage plant (PSP) and biofilm reactors (BFR, oxic and anoxic) as model systems for municipal sewage treatment. The PSP was characterized with respect to mixing behavior, the BFR with respect to biofilm content and sorption of the pharmaceutical compounds. The short-term experiments were carried out for 55 h in the PSP and for 48 h in the BFR. The concentration of the pharmaceuticals was in the microgram per liter range in presence of readily biodegradable substances in the milligram per liter range. Therefore, a too short time period and too low concentration to promote adaption of the microorganisms were applied. Under the operating conditions applied the biodegradation of the lipid lowering agent clofibric acid and the analgesic agents ibuprofen and diclofenac in the oxic BFR resembled that in the PSP. Clofibric acid and diclofenac were not eliminated and reached a level of approximately 95% of their initial concentration, whereas the concentration of ibuprofen was decreased to approximately 40% in the PSP and to approximately 35% in the oxic BFR. Both systems showed, therefore, an inherent ability for ibuprofen biodegradation. Elimination in the anoxic BFR resulted in a decrease of the concentration of all three substances to values between 60 and 80% of their initial concentration. In contrast to the PSP acetone revealed as inhibitor in the BFR. In both systems acetone was not degraded in the short-term tests.  相似文献   

11.
Pharmaceuticals previously identified in the effluent from the wastewater treatment plant (WWTP) in Montreal discharging into the St. Lawrence river, were tested for acute and chronic toxicity using the cnidarian Hydra attenuata. Acute toxicity was based on the established technique looking at morphological changes in the Hydra, while recently developed endpoints of feeding behaviour, attachment and growth (hydranth number) were used to measure chronic effects. The compounds under investigation (ibuprofen, naproxen, gemfibrozil, bezafibrate, carbamazepine, sulfamethoxazole, sulfapyridine, oxytetracycline, novobiocin, trimethoprim and caffeine) were tested individually in controlled laboratory exposures with LC(50) and EC(50) results calculated. All compounds tested had relatively high LC(50) values with gemfibrozil, ibuprofen and naproxen having the lowest at 22.36 mg/L and EC(50) values based on morphology of 1.18 to 2.62 mg/L (all concentrations are nominal). The EC(50) values based on feeding were similar to those based on morphology but with increased sensitivity for carbamazepine, bezafibrate and novobiocin. A trend of a reduction in feeding with deterioration in morphology was observed in the Hydra, with the exception of novobiocin, where a lower than expected EC(50) of 13.53 mg/L was found with no negative effect on morphology. Significant reductions in attachment and hydranth number were seen at concentrations of 1 and 5 mg/L for gemfibrozil and ibuprofen respectively. A toxicity threshold (TT) of 320 microg/L was calculated for ibuprofen, only a factor of 10(2) or 10 higher than the concentration found in the effluent in the present study (1.19 mug/L) and in other Canadian effluents studied (22 microg/L [Brun GL, Bernier M, Losier R, Doe K, Jackman P, Lee HB, Pharmaceutically active compounds in Atlantic Canadian sewage treatment plant effluents and receiving waters and potential for environmental effects as measured by acute and chronic aquatic toxicity. Environ Toxicol Chem 2006; 25(8): 2163-2176.] respectively. Using EU directive 93/67/EEC the pharmaceuticals under investigation can be classified as toxic (gemfibrozil, ibuprofen and naproxen), harmful (carbamazepine, bezafibrate, sulfapyridine, oxytetracycline and novobiocin) and non-toxic (sulfamethoxazole, trimethoprim and caffeine) and their potential toxicity for the aquatic environment is discussed.  相似文献   

12.
13.
The Hydra attenuata regeneration assay was used to identify the teratogenic potential of 10 pharmaceuticals identified in effluent from a large city wastewater treatment plant (WWTP). Three types of solvents were used to solubilise the pharmaceuticals (DMSO, acetone and ethanol), at concentrations determined to have no significant effect on measured endpoints. On the one hand, regeneration was significantly inhibited at (nominal) concentrations of 1, 5 and 1 mg/L for gemfibrozil, ibuprofen and naproxen respectively and at the higher concentration of 50 mg/L for bezafibrate and trimethoprim. On the other hand, carbamazepine and the antibiotics sulfapyridine, oxytetracycline and novobiocin significantly increased regeneration at 25, 5, 50 and 50 mg/L respectively. Relatively high IC50 values of 0.9, 3.84, 4.9 and 22.5 mg/L were calculated for gemfibrozil, ibuprofen, naproxen and bezafibrate, respectively. However when subjected to tier two toxicity assessment under EU regulatory guidance using environmentally relevant concentrations a MEC/PNEC value>1 was calculated for gemfibrozil, ibuprofen and naproxen indicating teratogenic potential and the necessity for further tier three assessment. A toxicity index (TI) was also calculated using three different techniques, with TI values>3 (indicating teratogenic potential) found for gemfibrozil, ibuprofen, naproxen and bezafibrate and >1 (indicating a weak teratogenic potential) found for carbamazepine. These results are discussed in the context of their environmental relevance and toxic potential.  相似文献   

14.
Quintana JB  Weiss S  Reemtsma T 《Water research》2005,39(12):2654-2664
Laboratory degradation tests with five acidic pharmaceuticals using activated sludge as inocculum under aerobic conditions were performed and microbial metabolites were analysed by liquid chromatography-mass spectrometry (LC-MS). Ketoprofen was partly mineralized as a sole source of carbon and energy and the metabolites determined by LC-MS suggest microbial ketoprofen degradation to proceed along the pathway known for biphenyls and related compounds. Bezafibrate, naproxen and ibuprofen were degraded only cometabolically whereas no transformation was obtained for diclofenac. Some biodegradation intermediates in these batch tests could be tentatively identified by means of LC-MS. The first step in microbial bezafibrate degradation appears to be the hydrolytic cleavage of the amide bond, generating well degradable 4-chlorobenzoic acid as one of the hydrolysis products. As previously found for mammals, ether cleavage and formation of desmethylnaproxen was the initial step in microbial degradation of naproxen. Two isomers of hydroxy-ibuprofen were detected as intermediates in the mineralization of ibuprofen. Laboratory studies suggest that naproxen and ibuprofen can be fully mineralized whereas more stable metabolites occur in microbial ketoprofen and bezafibrate transformation, that may deserve further attention. A LC-MS method for the trace analysis of these metabolites in water was developed and applied to municipal wastewater. Municipal wastewater treatment by a membrane bioreactor may gradually improve the removal of these pharmaceuticals.  相似文献   

15.
A newly developed analytical method was used to measure concentrations of nine pharmaceuticals and personal care products (PPCPs) in samples from two surface water bodies, a sewage treatment plant effluent and various stages of a drinking water treatment plant in Louisiana, USA, and from one surface water body, a drinking water treatment plant and a pilot plant in Ontario, Canada. The analytical method provides for simultaneous extraction and quantification of the following broad range of PPCPs and endocrine-disrupting chemicals: naproxen; ibuprofen; estrone; 17beta-estradiol; bisphenol A; clorophene; triclosan; fluoxetine; and clofibric acid. Naproxen was detected in Louisiana sewage treatment plant effluent at 81-106 ng/l and Louisiana and Ontario surface waters at 22-107 ng/l. Triclosan was detected in Louisiana sewage treatment plant effluent at 10-21 ng/l. Of the three surface waters sampled, clofibric acid was detected in Detroit River water at 103 ng/l, but not in Mississippi River or Lake Pontchartrain waters. None of the other target analytes were detected above their method detection limits. Based on results at various stages of treatment, conventional drinking-water treatment processes (coagulation, flocculation and sedimentation) plus continuous addition of powdered activated carbon at a dosage of 2 mg/l did not remove naproxen from Mississippi River waters. However, chlorination, ozonation and dual media filtration processes reduced the concentration of naproxen below detection in Mississippi River and Detroit River waters and reduced clofibric acid in Detroit River waters. Results of this study demonstrate that existing water treatment technologies can effectively remove certain PPCPs. In addition, our study demonstrates the importance of obtaining data on removal mechanisms and byproducts associated with PPCPs and other endocrine-disrupting chemicals in drinking water and sewage treatment processes.  相似文献   

16.
Many rivers and streams worldwide are impacted by pharmaceuticals originating from sewage. The hyporheic zone underlying streams is often regarded as reactive bioreactor with the potential for eliminating such sewage-born micropollutants. The present study aims at checking the elimination potential and analyzing the coupling of hydrodynamics, biogeochemistry and micropollutant processing. To this end, two sites at the lowland stream Erpe, which receives a high sewage burden, were equipped and sampled with nested piezometers. From temperature depth profiles we determined that at one of the sites infiltration of surface water into the aquifer occurs while exfiltration dominates at the other site. Biogeochemical data reveal intense mineralization processes and strictly anoxic conditions in the streambed sediments at both sites. Concentrations of the pharmaceuticals indomethacin, diclofenac, ibuprofen, bezafibrate, ketoprofen, naproxen and clofibric acid were high in the surface water and also in the subsurface at the infiltrating site. The evaluation of the depth profiles indicates some attenuation but due to varying surface water composition the evaluation of subsurface processes is quite complex. Borate and non-geogenic gadolinium were measured as conservative wastewater indicators. To eliminate the influence of fluctuating sewage proportions in the surface water, micropollutant concentrations are related to these indicators. The indicators can cope with different dilutions of the sewage but not with temporally varying sewage composition.  相似文献   

17.
In this paper we report on the performances of full-scale conventional activated sludge (CAS) treatment and two pilot-scale membrane bioreactors (MBRs) in eliminating various pharmaceutically active compounds (PhACs) belonging to different therapeutic groups and with diverse physico-chemical properties. Both aqueous and solid phases were analysed for the presence of 31 pharmaceuticals included in the analytical method. The most ubiquitous contaminants in the sewage water were analgesics and anti-inflammatory drugs ibuprofen (14.6-31.3 μg/L) and acetaminophen (7.1-11.4 μg/L), antibiotic ofloxacin (0.89-31.7 μg/L), lipid regulators gemfibrozil (2.0-5.9 μg/L) and bezafibrate (1.9-29.8 μg/L), β-blocker atenolol (0.84-2.8 μg/L), hypoglycaemic agent glibenclamide (0.12-15.9 μg/L) and a diuretic hydrochlorothiazide (2.3-4.8 μg/L). Also, several pharmaceuticals such as ibuprofen, ketoprofen, diclofenac, ofloxacin and azithromycin were detected in sewage sludge at concentrations up to 741.1, 336.3, 380.7, 454.7 and 299.6 ng/g dry weight. Two pilot-scale MBRs exhibited enhanced elimination of several pharmaceutical residues poorly removed by the CAS treatment (e.g., mefenamic acid, indomethacin, diclofenac, propyphenazone, pravastatin, gemfibrozil), whereas in some cases more stable operation of one of the MBR reactors at prolonged SRT proved to be detrimental for the elimination of some compounds (e.g., β-blockers, ranitidine, famotidine, erythromycin). Moreover, the anti-epileptic drug carbamazepine and diuretic hydrochlorothiazide by-passed all three treatments investigated.Furthermore, sorption to sewage sludge in the MBRs as well as in the entire treatment line of a full-scale WWTP is discussed for the encountered analytes. Among the pharmaceuticals encountered in sewage sludge, sorption to sludge could be a relevant removal pathway only for several compounds (i.e., mefenamic acid, propranolol, and loratidine). Especially in the case of loratidine the experimentally determined sorption coefficients (Kds) were in the range 2214-3321 L/kg (mean). The results obtained for the solid phase indicated that MBR wastewater treatment yielding higher biodegradation rate could reduce the load of pollutants in the sludge. Also, the overall output load in the aqueous and solid phase of the investigated WWTP was calculated, indicating that none of the residual pharmaceuticals initially detected in the sewage sludge were degraded during the anaerobic digestion. Out of the 26 pharmaceutical residues passing through the WWTP, 20 were ultimately detected in the treated sludge that is further applied on farmland.  相似文献   

18.
An analytical method is presented, which allows the simultaneous extraction of neutral and acidic compounds from 20-L seawater samples at ambient pH (approximately 8.3). It is based on a solid-phase extraction by means of a polystyrene-divinylbenzene sorbent and gas chromatographic-mass spectrometric detection, and provides detection limits in the lower pg/L range. The method was applied to the screening of samples from different North Sea areas for clofibric acid, diclofenac, ibuprofen, ketoprofen, propyphenazone, caffeine and N,N-diethyl-3-toluamide (DEET). Whereas clofibric acid, caffeine and DEET showed to be present throughout the North Sea in concentrations of up to 1.3, 16 and 1.1 ng/L, respectively, propyphenazone could only be detected after further clean-up. Diclofenac and ibuprofen were found in the estuary of the river Elbe (6.2 and 0.6 ng/L, respectively) but in none of the marine samples. Ketoprofen was below the detection limit in all samples.  相似文献   

19.
We measured six acidic analgesics or anti-inflammatories (aspirin, ibuprofen, naproxen, ketoprofen, fenoprofen, mefenamic acid), two phenolic antiseptics (thymol, triclosan), four amide pharmaceuticals (propyphenazone, crotamiton, carbamazepine, diethyltoluamide), three phenolic endocrine disrupting chemicals (nonylphenol, octylphenol, bisphenol A), and three natural estrogens (17beta-estradiol, estrone, estriol) in 24-h composite samples of influents and secondary effluents collected seasonally from five municipal sewage treatment plants in Tokyo. Aspirin was most abundant in the influent, with an average concentration of 7300 ng/L (n = 16), followed by crotamiton (921 ng/L), ibuprofen (669 ng/L), triclosan (511 ng/L), and diethyltoluamide (503 ng/L). These concentrations were 1 order of magnitude lower than those reported in the USA and Europe. This can be ascribed to lower consumption of the pharmaceuticals in Japan. Aspirin, ibuprofen, and thymol were removed efficiently during primary + secondary treatment (> 90% efficiency). On the other hand, amide-type pharmaceuticals, ketoprofen, and naproxen showed poor removal (< 50% efficiency), which is probably due to their lower hydrophobicity (logKow < 3). Because of the persistence of crotamiton during secondary treatment, crotamiton was most abundant among the target pharmaceuticals in the effluent. This is the first paper to report ubiquitous occurrence of crotamiton, a scabicide, in sewage. Because crotamiton is used worldwide and it is persistent during secondary treatment, it is a promising molecular marker of sewage and secondary effluent.  相似文献   

20.
Concentrations and retention of pharmaceutically active substances are crucial for assessing the environmental risk of medication of humans. We hypothesize that environmental introduction concentrations (EICs) of drugs in the Mexico City-Mezquital Valley wastewater irrigation system can be estimated using information on water consumption, sales data, and excretion rates. EICs of six acidic and five basic drugs were calculated and compared with concentrations measured in wastewater, irrigation water, soil drainage, and springs by liquid chromatography electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS). EICs of trimethoprim, erythromycin, naproxen, ibuprofen, and diclofenac in sewage equaled or exceeded the US FDA action limit of 1mug/L for detailed environmental risk assessment (ERA). Concentrations of clarithromycin, clindamycin, metoprolol, sulfasalazine, bezafibrate, and gemfibrozil were smaller. Calculated EICs of all compounds except metoprolol and clarithromycin were comparable to measured concentrations if excretion rates were considered. Whereas concentrations of basic compounds with positive or neutral charges were effectively reduced during reservoir storage and soil passage, acidic, anionic compounds were hardly retained. Though realistic EICs can be predicted for most substances, large deviations between EICs and measured concentrations in the case of metoprolol illustrate that estimated concentrations cannot substitute for monitoring programs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号