首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Previous studies identified a curvilinear association between aggregated blood lead (BL) and soil lead (SL) data in New Orleans census tracts. In this study we investigate the relationships between SL (mg/kg), age of child, and BL (μg/dL) of 55,551 children in 280 census tracts in metropolitan New Orleans, 2000 to 2005. Analyses include random effects regression models predicting BL levels of children (μg/dL) and random effects logistic regression models predicting the odds of BL in children exceeding 15, 10, 7, 5, and 3 μg/dL as a function of age and SL exposure. Economic benefits of SL reduction scenarios are estimated. A unit raise in median SL0.5 significantly increases the BL level in children (b = 0.214 p = < 0.01), and a unit change in Age0.5 significantly increases child BL (b = 0.401, p = < 0.01). A unit change in Age0.5 increases the odds of a child BL exceeding 10 μg/dL by a multiplicative factor of 1.23 (95% CI 1.21 to 1.25), and a unit (mg/kg) addition of SL increases the odds of child BL > 10 μg/dL by a factor of 1.13 (95% CI 1.12 to 1.14). Extrapolating from regression results, we find that a shift in SL regulatory standard from 400 to 100 mg/kg provides each child with an economic benefit ranging from $4710 to $12,624 ($US 2000). Children's BL is a curvilinear function of both age and level of exposure to neighborhood SL. Therefore, a change in SL regulatory standard from 400 to 100 mg/kg provides children with substantial economic benefit.  相似文献   

2.

Objectives

The association between low blood lead levels (< 5 μg/dL) and the inattention-hyperactivity symptoms and neurocognitive profiles of school-aged Korean children was investigated.

Methods

We measured blood lead levels in 256 Korean children aged 8-10 years. Teachers completed the Attention-Deficit Hyperactivity Disorder Rating Scale (T-ARS)-IV to assess inattentive and hyperactive symptoms. Parents completed the Korean version of the Learning Disability Evaluation Scale (K-LDES). Children performed neurocognitive tests [The Continuous Performance Test (CPT), the Children's Color Trails Test, and the Stroop Color and Word Test (SCWT)].

Results

A linear regression analysis indicated that the blood lead concentrations were associated with the inattention scores [B = 4.8, S.E. = 1.6, 95% confidence interval (CI): 1.5-8.0], the hyperactivity subscores (3.1, 1.4, 0.3-5.9), and the total score (7.9, 2.9, 2.1-13.6) on the T-ARS; the number of omission errors on the CPT (20.6, 7.1, 6.5-34.6); the listening (−1.4, 0.7, −2.8 to −0.1), reading (−2.1, 0.7, −3.4 to −0.7), writing (−2.0, 0.7, −3.4 to −0.6), spelling (−2.2, 0.7, −3.7 to −0.7), and calculating (−1.8, 0.7, −3.1 to −0.4) scores on the K-LDES; and the color-word score on the SCWT (−6.7, 3.4, −13.3 to −0.1). A logistic regression analysis indicated that the probability of inattentive and hyperactive symptoms was increased with higher blood lead levels in boys with an odds ratio of 2.768 [B = 1.018, S.E. = 0.487, p = 0.036, 95% CI: 1.066-7.187].

Conclusion

This study suggests that even low blood lead levels (< 5 μg/dL) are associated with inattentive and hyperactivity symptoms and learning difficulties in school-aged children.  相似文献   

3.
A study was conducted to assess the potential of nitrate-nitrogen (NO3-N) and fluoride (F) contamination in drinking groundwater as a function of lithology, soil characteristics and agricultural activities in an intensively cultivated district in India. Two hundred and fifty two groundwater samples were collected at different depths from various types of wells and analyzed for pH, electrical conductivity (EC), NO3-N load and F content. Database on lithology, soil properties, predominant cropping systems, fertilizer and pesticide uses were also recorded for the district. The NO3-N load in groundwater samples were low ranging from 0.12 to 6.58 μg mL− 1 with only 8.7% of them contained greater than 3.0 μg mL− 1 well below the 10 μg mL− 1, the threshold limit fixed by WHO for drinking purpose. Samples from the habitational areas showed higher NO3-N content over the agricultural fields. The content decreased with increasing depth of wells (r = − 0.25, P ≤ 0.01) and increased with increasing rate of nitrogenous fertilizer application (r = 0.90, P ≤ 0.01) and was higher in areas where shallow- rather than deep-rooted crops (r = − 0.28, = ≤ 0.01, with average root depth) are grown. The NO3-N load also decreased with increasing bulk density (r = − 0.73, P ≤ 0.01) and clay content (r = − 0.51, P ≤ 0.01) but increased with increasing hydraulic conductivity (r = 0.68, P ≤ 0.01), organic C (r = 0.78, P ≤ 0.01) and potential plant available N (r = 0.82, P ≤ 0.01) of soils. Fluoride content in groundwater was also low (0.02 to 1.15 μg mL− 1) with only 4.0% of them exceeding 1.0 μg mL− 1 posing a potential threat of fluorosis. On average, its content varied little spatially and along depth of sampling aquifers indicating little occurrence of F containing rocks/minerals in the geology of the district. The content showed a significant positive correlation (r = 0.234, = ≤ 0.01) with the amount of phosphatic fertilizer (single super phosphate) used for agriculture. Results thus indicated that the groundwater of the study area is presently safe for drinking purpose but some anthropogenic activities associated with intensive cultivation had a positive influence on its loading with NO3-N and F.  相似文献   

4.
The extent of children's exposure to multiple toxic metals is not well described in many developing countries. We examined metal exposures in young children (6-37 months) from Montevideo, Uruguay and their mothers (15-47 years) participating in a community-based study. Hair samples collected from 180 children and their mothers were analyzed for: lead (Pb), cadmium (Cd), manganese (Mn), and arsenic (As) concentration using inductively coupled plasma-mass spectrometry (ICP-MS). Median metal levels (μg/g) were: Pb 13.69, Mn 1.45, Cd 0.17, and As 0.09 for children and Pb 4.27, Mn 1.42, Cd 0.08, and As 0.02 for mothers. Of the child and maternal samples, 1.7% and 2.9% were below the limit of detection (LOD) for Cd, and 21.3% and 38.5% were below the LOD for As, respectively. Correlations between maternal and child levels ranged 0.38-0.55 (p < 0.01). Maternal hair metal levels were the strongest predictors of metal concentrations in children's hair. Girls had significantly lower As levels than boys (p < 0.01) but did not differ on other metals. In addition, in bivariate logistic regressions predicting the likelihood that the child would be exposed to multiple metals, hemoglobin < 10.5 g/dL (OR = 2.12, p < 0.05), blood lead (OR = 1.17, p < 0.01), and the mother being exposed to two or more metals (OR = 3.34, p < 0.01) were identified as significant predictors of increased likelihood of multiple metal exposure. Older child age (OR = 0.96, p < 0.05), higher maternal education (OR = 0.35, p < 0.01), and higher number of household possessions (OR = 0.83, p < 0.01) were significantly associated with decreased likelihood of multiple metal exposure. Preschool children in Uruguay are exposed to multiple metals at levels that in other studies have been associated with cognitive and behavioral deficits. Sources of exposure, as well as cognitive and behavioral consequences of multiple metal exposure, should be investigated in this population.  相似文献   

5.
Arsenic bioaccessibility in soils near chromated copper arsenate (CCA)-treated structures has recently been reported, and results have shown that soil properties and arsenic fractionation can influence bioaccessibility. Because of the limited data set of published results, additional soil samples and a wider range of soil properties are tested in the present work. The objectives are: (1) to confirm previous results regarding the influence of soil properties on arsenic bioaccessibility in CCA-contaminated soils, (2) to investigate additional soil properties influencing arsenic bioaccessibility, and to identify chemical extractants which can estimate in vitro gastrointestinal (IVG) bioaccessibility, (3) to determine arsenic speciation in the intestinal phase of the IVG method and, (4) to assess the influence of two particle-size fractions on arsenic bioaccessibility. Bioaccessible arsenic in eight soils collected near CCA-treated utility poles was assessed using the IVG method. Five out of the eight soils were selected for a detailed characterization. Moreover, these five soils and two certified reference materials were tested by three different metal oxide extraction methods (citrate dithionite (CD), ammonium oxalate (OX), and hydroxylamine hydrochloride (HH)). Additionally, VMINTEQ was used to determine arsenic speciation in the intestinal phase. Finally, two particle-size fractions (< 250 μm, < 90 μm) were tested to determine their influence on arsenic bioaccessibility. First, arsenic bioaccessibility in the eight study-soils ranged between 17.0 ± 0.4% and 46.9 ± 1.1% (mean value 30.5 ± 3.6%). Using data from 20 CCA-contaminated soil samples, total organic carbon (r = 0.50, p < 0.05), clay content (r = − 0.57, p < 0.01), sand content (r = 0.48, p < 0.05), and water-soluble arsenic (r = 0.66, p < 0.01) were correlated with arsenic bioaccessibility. The mean percentage of total arsenic extracted from five selected soils was: HH (71.9 ± 4.1%) > OX (58.0 ± 3.1%) > water-soluble arsenic (2.2 ± 0.5%), while the mean value for arsenic bioaccessibility was 27.3 ± 2.8% (n = 5). Arsenic extracted by HH (r = 0.85, p < 0.01, n = 8) and OX (r = 0.93, p < 0.05, n = 5), showed a strong correlation with arsenic bioaccessibility. Moreover, dissolved arsenic in the intestinal phase was exclusively under the form of arsenate As(V). Finally, arsenic bioaccessibility (in mg/kg) increased when soil particles < 90 μm were used.  相似文献   

6.
The risks and benefits of using mercury (Hg) in dental amalgam have long been debated. This study was designed to estimate Hg body burden and its association with dental amalgam fillings in 182 children (ages: 5-15 years) living in Taif City. Hg was measured in urine (UHg), hair (HHg) and toenails (NHg) by the Atomic Absorption Spectrophotometer with Vapor Generator Accessory system. Urinary Hg levels were calculated as both micrograms per gram creatinine (μg/g creatinine) and micrograms per liter (μg/L). We found that children with amalgam fillings (N = 106) had significantly higher UHg-C levels than children without (N = 76), with means of 3.763 μg/g creatinine versus 3.457 μg/g creatinine, respectively (P = 0.019). The results were similar for UHg (P = 0.01). A similar pattern was also seen for HHg, with means of 0.614 μg/g (N = 97) for children with amalgam versus 0.242 μg/g (N = 74) for those without amalgam fillings (P = 0). Although the mean NHg was higher in children without amalgam (0.222 μg/g, N = 61) versus those with (0.163 μg/g, N = 101), the relationship was not significant (P = 0.069). After adjusting for many confounders, the multiple logistic regression model revealed that the levels of UHg-C and HHg were 2.047 and 5.396 times higher, respectively, in children with dental amalgam compared to those without (P < 0.01). In contrast, a significant inverse relationship was seen between NHg levels and dental amalgam fillings (P = 0.003). Despite the controversy surrounding the health impact of dental amalgam, this study showed some evidence that amalgam-associated Hg exposure might be related with symptoms of oral health, such as aphthous ulcer, white patches, and a burning-mouth sensation. Further studies are needed to reproduce these findings. The present study showed that significant numbers of children with or without amalgam had Hg levels exceeding the acceptable reference limits. The detrimental neurobehavioral and/or nephrotoxic effects of such an increased Hg on children should be a cause of concern, and further investigation is warranted. Our results are alarming and indicate an urgent need for biomonitoring and assessment of exposure. Changes in dental practices involving amalgam, especially for children, are highly recommended in order to avoid unnecessary exposure to Hg.  相似文献   

7.
The objectives of this study were (1) to evaluate levels of lead (Pb) and cadmium (Cd) in the breast milk at 2 months postpartum, (2) to investigate the relationship between Pb and Cd levels in breast milk and some sociodemographic parameters and (3) to detect whether these levels have any influence on the infant's physical status or on postpartum depression in the mothers. Pb and Cd levels in breast milk were determined by Inductively Coupled Plasma Mass Spectroscopy (ICP-MS). The median breast milk concentrations of Pb and Cd were 20.59 and 0.67 μg/l, respectively. In 125 (87%) of 144 samples, Pb levels were higher than the limit in breast milk reported by the World Health Organization (WHO) (> 5 μg/l). Breast milk Cd levels were > 1 μg/l in 52 (36%) mothers. The mothers with a history of anemia at any time had higher breast milk Pb levels than those without a history of anemia (21.1 versus 17.9 μg/l; p = 0.0052). The median breast milk Cd levels in active and passive smokers during pregnancy were significantly higher than in non-smokers (0.89, 0.00 μg/l, respectively; p = 0.023). The breast milk Cd levels of the mothers who did not use iron and vitamin supplements for 2 months postpartum were found to be higher than in those who did use the supplements (iron: 0.73, 0.00 μg/l, p = 0.023; vitamin: 0.78, 0.00 μg/l, p = 0.004, respectively). Breast milk Cd levels at the 2nd month were correlated negatively with the z scores of head circumference and the weight for age at birth (r = − 0.257, p = 0.041 and r = − 0.251, p = 0.026, respectively) in girls. We found no correlation between the breast milk Pb and Cd levels and the Edinburgh Postpartum Depression Scale scores. Breast milk monitoring programs should be conducted that have tested considerable numbers of women over time in view of the high levels of Pb in breast milk in this study.  相似文献   

8.
To characterise atmospheric input of chemical contaminants to urban rainwater tanks, bulk deposition (wet + dry deposition) was collected at sixteen sites in Brisbane, Queensland, Australia on a monthly basis during April 2007-March 2008 (N = 175). Water from rainwater tanks (22 sites, 26 tanks) was also sampled concurrently. The deposition/tank water was analysed for metals, soluble anions and selected samples were additionally analysed for PAHs, pesticides, phenols, organic & inorganic carbon. Flux (mg/m2/d) of total solids mass was found to correlate with average daily rainfall (R2 = 0.49) indicating the dominance of the wet deposition contribution to total solids mass. On average 97% of the total mass of analysed components was accounted for by Cl (25.0%), Na (22.6%), organic carbon (20.5%), NO3 (10.5%), SO42− (9.8%), inorganic carbon (5.7%), PO43− (1.6%) and NO2 (1.5%). For other minor elements the average flux from highest to lowest was in the order of Fe > Al > Zn > Mn > Sr > Pb > Ba > Cu > Se. There was a significant effect of location on flux of K, Sb, Sn, Li, Mn, Fe, Cu, Zn, Ba, Pb and SO42− but not other metals or anions. Overall the water quality resulting from the deposition (wet + dry) was good but 10.3%, 1.7% and 17.7% of samples had concentrations of Pb, Cd and Fe respectively greater than the Australian Drinking Water Guidelines (ADWG). This generally occurred in the drier months. In comparison 14.2% and 6.1% of tank samples had total Pb and Zn concentrations exceeding the guidelines. The cumulative mean concentration of lead in deposition was on average only 1/4 of that in tank water over the year at a site with high concentrations of Pb in tank water. This is an indication that deposition from the atmosphere is not the major contributor to high lead concentrations in urban rainwater tanks in a city with reasonable air quality, though it is still a significant portion.  相似文献   

9.
Soil cores and rainwater were sampled under canopies of Cryptomeria japonica in four montane areas along an atmospheric depositional gradient in Kanto, Japan. Soil cores (30 cm in depth) were divided into 2-cm or 4-cm segments for analysis. Vertical distributions of elemental enrichment ratios in soils were calculated as follows: (X/Al)i/(X/Al)BG (where the numerator and denominator are concentration ratios of element-X and Al in the i- and bottom segments of soil cores, respectively). The upper 14-cm soil layer showed higher levels of Cu, Zn, As, Sb, and Pb than the lower (14-30 cm) soil layer. In the four areas, the average enrichment ratios in the upper 6-cm soil layer were as follows: Pb (4.93) ≥ Sb (4.06) ≥ As (3.04) > Zn (1.71) ≥ Cu (1.56). Exogenous elements (kg/ha) accumulated in the upper 14-cm soil layer were as follows: Zn (26.0) > Pb (12.4) > Cu (4.48) ≥ As (3.43) ≥ Sb (0.49). These rank orders were consistent with those of elements in anthropogenic aerosols and polluted (roadside) air, respectively, indicating that air pollutants probably caused enrichment of these elements in the soil surface layer. Approximately half of the total concentrations of As, Sb, and Pb in the upper 14-cm soil layer were derived from exogenous (anthropogenic) sources. Sb showed the highest enrichment factor in anthropogenic aerosols, and shows similar deposition behavior to NO3, which is a typical acidic air pollutant. There was a strong correlation between Sb and NO3 concentrations in rainfall (e.g., in the throughfall under C. japonica: [NO3] = 21.1 [dissolved Sb], r = 0.938, p < 0.0001, n = 182). Using this correlation, total (cumulative) inputs of NO3 were estimated from the accumulated amounts of exogenous Sb in soils, i.e., 16.7 t/ha at Mt. Kinsyo (most polluted), 8.6 t/ha at Mt. Tsukuba (moderately polluted), and 5.8 t/ha at the Taga mountain system (least polluted). There are no visible ecological effects of these accumulated elements in the Kanto region at present. However, the concentrations of some elements are within a harmful range, according to the Ecological Soil Screening Levels determined by the U.S. Environmental Protection Agency.  相似文献   

10.
With the purpose of knowing seasonal variations of Cd, Cr, Hg and Pb in a river basin with past and present mining activities, elemental concentrations were measured in six fish species and four crustacean species in Baluarte River, from some of the mining sites to the mouth of the river in the Pacific Ocean between May 2005 and March 2006. In fish, highest levels of Cd (0.06 μg g− 1 dry weight) and Cr (0.01 μg g− 1) were detected during the dry season in Gobiesox fluviatilis and Agonostomus monticola, respectively; the highest levels of Hg (0.56 μg g− 1) were detected during the dry season in Guavina guavina and Mugil curema. In relation to Pb, the highest level (1.65 μg g− 1) was detected in A. monticola during the dry season. In crustaceans, highest levels of Cd (0.05 μg g− 1) occurred in Macrobrachium occidentale during both seasons; highest concentration of Cr (0.09 μg g− 1) was also detected in M. occidentale during the dry season. With respect to Hg, highest level (0.20 μg g− 1) was detected during the rainy season in Macrobrachium americanum; for Pb, the highest concentration (2.4 μg g− 1) corresponded to Macrobrachium digueti collected in the dry season. Considering average concentrations of trace metals in surficial sediments from all sites, Cd (p < 0.025), Cr (p < 0.10) and Hg (p < 0.15) were significantly higher during the rainy season. Biota sediment accumulation factors above unity were detected mostly in the case of Hg in fish during both seasons. On the basis of the metal levels in fish and crustacean and the provisional tolerable weekly intake of studied elements, people can eat up to 13.99, 0.79 and 2.34 kg of fish in relation to Cd, Hg and Pb, respectively; regarding crustaceans, maximum amounts were 11.33, 2.49 and 2.68 kg of prawns relative to levels of Cd, Hg and Pb, respectively.  相似文献   

11.
In 2005 an urban solid waste incinerator (SWI) was commissioned in Bilbao (Basque Country, Spain). Serum and urine samples were collected from 95 and 107 volunteers in 2006 and 2008 respectively, of which 62 were repeats from the same individuals. Blood lead levels (BPb) were determined, as were the concentrations of cadmium (Cd), chromium (Cr) and mercury (Hg) in urine (UCd, UCr and UHg). The town of Alonsotegi and a borough of Bilbao (Altamira, Rekalde) were considered to be close, less than 2 km from the plant, and correspond to an urban environment with high traffic density. The areas of reference were a borough of Bilbao (Santutxu-Zurbaran), 5 km from the plant, also in an urban area with high traffic density, and a small town with little industrial activity and low traffic density (Balmaseda) 20 km from the plant; neither of these is downwind from the site with respect to prevailing winds. There was a significant correlation for BPb, r = 0.63 (p < 0.001), between the two surveys. However, there was no linear correlation for the other three metals (UCd, UCr and UHg), between the two sampling periods (p > 0.05). Multiple linear regression models did not show increases over time of the levels of BPb, UCd, UCr and UHg in the areas close to the SWI compared to those of areas located further away, after adjusting for confounding variables. These results reinforce the hypothesis that populations near modern plants for solid waste incineration do not manifest increased levels of heavy metals.  相似文献   

12.
The study of a Posidonia oceanica mat (a peat-like marine sediment) core has provided a record of changes in heavy metal abundances (Fe, Mn, Ni, Cr, Cu, Pb, Cd, Zn, As and Al) since the Mid-Holocene (last 4470 yr) in Portlligat Bay (NW Mediterranean). Metal contents were determined in P. oceanica. Both, the concentration records and the results of principal components analysis showed that metal pollution in the studied bay started ca. 2800 yr BP and steadily increased until present. The increase in Fe, Cu, Pb, Cd, Zn and As concentrations since ca. 2800 yr BP and in particular during Greek (ca. 2680-2465 cal BP) and Roman (ca. 2150-1740 cal BP) times shows an early anthropogenic pollution rise in the bay, which might be associated with large- and short-scale cultural and technological development. In the last ca. 1000 yr the concentrations of heavy metals, mainly derived from anthropogenic activities, have significantly increased (e.g. from ~ 15 to 47 μg g− 1 for Pb, ~ 23 to 95 μg g− 1 for Zn and ~ 8 to 228 μg g− 1 for As). Our study demonstrates for the first time the uniqueness of P. oceanica meadows as long-term archives of abundances, patterns, and trends of heavy metals during the Late Holocene in Mediterranean coastal ecosystems.  相似文献   

13.

Objective

The heavy metals lead (Pb) and mercury (Hg) are ubiquitous environmental pollutants with high neurotoxic potential. We aimed to compare perinatal Pb and Hg concentrations and to explore the potential association between Pb and Hg exposure and newborn anthropometry.

Study design

Pregnant women were recruited in 2005 at the General Hospital Vienna for participation in this longitudinal study. Pb and Hg concentrations were measured in maternal blood and hair, placenta, cord blood, meconium, and breast milk of 53 mother-child pairs by CV-AAS, GF-AAS, and HPLC-CV-ICPMS. We conducted bivariate analyses and categorical regression analysis (CATREG) to evaluate the determinants of Pb and Hg exposure, and of infant anthropometry.

Results

Median Pb and total Hg contents were low, i.e., 25 μg/L (maternal blood-Pb), 13 μg/L (cord blood-Pb), 0.7 μg/L (maternal blood-Hg), and 1.1 μg/L (cord blood-Hg). Hg levels in maternal and fetal tissues were frequently correlated (r > 0.3, P < 0.05, respectively). Regarding Pb, only maternal blood and cord blood concentrations correlated (P = 0.043). Cord blood levels indicated higher Hg exposure but lower Pb exposure relative to maternal blood contents. Adjusted CATREG models indicated the significant predictors of birth length (placenta-Pb, gestational length, meconium-Pb), birth weight (placenta-Pb, gestational length, maternal blood-Pb), and head circumference (maternal education, maternal height). Besides one significant correlation between maternal hair Hg and birth length, the mercury levels were not associated with newborn anthropometry.

Conclusions

Our data implicate that different modes of action may exist for placentar transfer of Pb and Hg as well as that low Pb exposure levels can result in lower birth weight. The findings related to newborn anthropometry need to be confirmed by the examination of larger study groups. Further research is needed to clarify the mechanisms of Pb and Hg transfer via the placenta, and to explore how prenatal Pb exposure is related to intrauterine growth.  相似文献   

14.
Arsenic (As) poisoning has become a worldwide public health concern. The skin is quite sensitive to As and skin lesions are the most common and earliest nonmalignant effects associated to chronic As exposure. In 2005-2007, a survey was carried out on surface and groundwater arsenic contamination and relationships between As exposure via the drinking water and related adverse health effects (melanosis and keratosis) on villagers resides on the banks of Manchar lake, southern part of Sindh, Pakistan. We screened the population from arsenic-affected villages, 61 to 73% population were identified patients suffering from chronic arsenic toxicity. The effects of As toxicity via drinking water were estimated by biological samples (scalp hair and blood) of adults (males and females), have or have not skin problem (n = 187). The referent samples of both genders were also collected from the areas having low level of As (< 10 μg/L) in drinking water (n = 121). Arsenic concentration in drinking water and biological samples were analyzed using electrothermal atomic absorption spectrometry. The range of arsenic concentrations in lake surface water was 35.2-158 μg/L, which is 3-15 folds higher than World Health Organization [WHO, 2004. Guidelines for drinking-water quality third ed., WHO Geneva Switzerland.]. It was observed that As concentration in the scalp hair and blood samples were above the range of permissible values 0.034-0.319 μg As/g for hair and < 0.5-4.2 μg/L for blood. The linear regressions showed good correlations between arsenic concentrations in water versus hair and blood samples of exposed skin diseased subjects (R2 = 0.852 and 0.718) as compared to non-diseased subjects (R2 = 0.573 and 0.351), respectively.  相似文献   

15.
The present case study on lead in Europe illustrates the use of the Integrated Monitoring Framework Strategy to assess the health outcome of environmental pollution by evaluating the associations between lead in various environmental compartments (air, soil, dust, drinking water and diet) and lead concentrations in blood (B-Pb) for various age-related sub-populations. The case study was aimed to investigate whether environmental, exposure and biomonitoring data at general population level, covering all EU member states, could be integrated. Although blood lead has been monitored extensively in Europe, consistent datasets are not yet available. Data diverge with regard to objectives, regional scale, sampling years, gender, age groups and sample size.Significant correlations were found between B-Pb and the concentrations of Pb in air and diet. The significant decrease of the Pb in air over time from 0.31 μg/m3 (P95: 0.94; n = 98) prior to 1990 to 0.045 μg/m3 (P95: 0.11; n = 256) in 2007 (latest observations included) (Δ = − 85%) corresponds to a decline in B-Pb by 48% and 57% in adult women and adult men, respectively. For pre-school children a more shallow decline in B-Pb of 16% was calculated over the same period. Similarly, the reduction in Pb-dietary intake from on average 68.7 μg/d (P95: 161.6; n = 19) in 1978 to 35.7 μg/d (P95: 82.3; n = 33) in the years post 2000 (Δ = − 48%) is paralleled by a decline in B-Pb of 32, 33 and 19% in adult women, primary- and pre-school children, respectively. Insufficient data exist for other age groups to calculate statistically significant correlations.Although regression models have been derived to predict B-Pb for different sub-populations in Europe based on Pb concentrations in air and soil as well as dietary intake, it is concluded that the available data are insufficient to accurately predict actual and future simultaneous exposure to Pb from various environmental compartments, and as a consequence the health impact of Pb for various target populations at EU scale. At least due to data availability, air Pb remains the best predictor of B-Pb in the population. However, lead emission sources have largely been reduced and inhalation of lead in air is not causal to B-Pb levels. Therefore, there is a need of adequate data for Pb in soil and house dust, and in diet and drinking water as these are causal exposure sources with a longer Pb half-life than air. An extended and more harmonized surveillance system monitoring B-Pb, especially in children, is urgently required in order to identify, quantify and reduce still remaining sources of Pb exposure.  相似文献   

16.

Objective

To investigate blood lead level and its relationship to copper, zinc, calcium, magnesium and iron in the children aged 0 to 14 years old from Beijing, China.

Methods

We classified 3181 children into one of the four groups: Group A (n = 783, < 1 year old); Group B (n = 1538, 1-3 years old); Group C (n = 443, 3-7 years old); and, Group D (n = 417, 7-14 years old). All these metal elements were determined by atomic absorption spectrometry.

Results

The blood lead level was 0.207 ± 0.105 μmol/L. There was a significant gender difference for zinc (P < 0.05) in Group C, and there was also a significant gender difference for copper (P < 0.05) and lead (P < 0.05) in Group D. Controlling for gender and age, we observed that there was a negative correlation of lead with zinc (r = − 0.052, P < 0.01), magnesium (r = − 0.042, P < 0.05) and iron (r = − 0.031, P < 0.05), respectively. Furthermore, in the children aged 1-7 years old, we also found there was a negative linear correlation of lead with zinc, magnesium and iron, respectively (P < 0.01).

Conclusion

Blood lead level in children from Beijing was markedly decreased. And deficiency of zinc, magnesium and iron is related to the elevated blood lead level in the children aged 1-7 years.  相似文献   

17.
The purpose of this study was to link meteorological factors and mosquito (Aedes aegypti) abundance to examine the potential effects of climate variations on patterns of dengue epidemiology in Taiwan during 2001-2008. Spearman's rank correlation tests with and without time-lag were performed to investigate the overall correlation between dengue incidence rates and meteorological variables (i.e., minimum, mean, and maximum temperatures, relative humidity (RH), and rainfall) and percentage Breteau index (BI) level > 2 in Taipei and Kaohsiung of northern and southern Taiwan, respectively. A Poisson regression analysis was performed by using a generalized estimating equations (GEE) approach. The most parsimonious model was selected based on the quasi-likelihood based information criterion (QICu). Spearman's rank correlation tests revealed marginally positive trends in the weekly mean (ρ = 0.28, < 0.0001), maximum (ρ = 0.26, < 0.0001), and minimum (ρ = 0.30, < 0.0001) temperatures in Taipei. However, in Kaohsiung, all negative trends were found in the weekly mean (ρ = − 0.32, < 0.0001), maximum (ρ = − 0.30, < 0.0001), and minimum (ρ = − 0.32, p < 0.0001) temperatures. This study concluded that based on the GEE approach, rainfall, minimum temperature, and RH, all with 3-month lag, and 1-month lag of percentage BI level > 2 are the significant predictors of dengue incidence in Kaohsiung (QICu = − 277.77). This study suggested that warmer temperature with 3-month lag, elevated humidity with high mosquito density increased the transmission rate of human dengue fever infection in southern Taiwan.  相似文献   

18.
In a model feed channel for spiral-wound membranes the quantitative relationship of biomass and iron accumulation with pressure drop development was assessed. Biofouling was stimulated by the use of tap water enriched with acetate at a range of concentrations (1-1000 μg C l−1). Autopsies were performed to quantify biomass concentrations in the fouled feed channel at a range of Normalized Pressure Drop increase values (NPDi). Active biomass was determined with adenosinetriphosphate (ATP) and the concentration of bacterial cells with Total Direct Cell count (TDC). Carbohydrates (CH) were measured to include accumulated extracellular polymeric substances (EPS). The paired ATP and CH concentrations in the biofilm samples were significantly (p < 0.001; R2 = 0.62) correlated and both parameters were also significantly correlated with NPDi (p < 0.001). TDC was not correlated with the pressure drop in this study. The threshold concentration for an NPDi of 100% was 3.7 ng ATP cm−2 and for CH 8.1 μg CH cm−2. Both parameters are recommended for diagnostic membrane autopsy studies. Iron concentrations of 100-400 mg m−2 accumulated in the biofilm by adsorption were not correlated with the observed NPDi, thus indicating a minor role of Fe particulates at these concentrations in fouling of spiral-wound membrane.  相似文献   

19.
Chromium may affect humoral and cellular immunity, acting on T lymphocytes as well as on granulocytes and monocytes cells. Cytokines play an important role in the immune balance. In this study, the level of IL-12 and IFN-γ were evaluated in the sera and PHA/LPS stimulated culture supernatant of human PBMCs of healthy volunteers and occupationally exposed chromium workers. All the workers were highly exposed to chromium having mean of 104.65 ± 77.21 µg/dL (range 23.7-316.8 µg/dL). A suspension of exposed and unexposed human PBMC (0.5 × 106 cells/ml) prepared and cultured in RPMI-1640 supplemented with 10% FCS for 18 h in the presence or absence of LPS (10 ng/ml) which used for stimulation of IL-12 and IFN-γ. The level of IL-12 and IFN-γ were evaluated in the sera samples as well as LPS stimulated and unstimulated culture supernatant of h-PBMCs of chromium exposed workers. In these chromium exposed workers the level of IL-12 was 433.66 ± 197.49 pg/ml and 983.45 ± 330.99 pg/ml in LPS stimulated culture supernatant of normal individuals and highly chromium exposed workers, which was significant (< 0.05). Although the level of IL-12 was (78.61 ± 61.03 pg/ml to 146.52 ± 46.37 pg/ml) elevated in unstimulated culture supernatant of h-PBMCs of chromium exposed individuals as compared to control, but it was not significant. This observation also suggests that a significant increase in IFN-γ production in LPS stimulated and unstimulated culture supernatant of h-PBMCs of chromium exposed workers as compared to control. However, IFN-γ level have a significant positive correlation between blood chromium level (r = 0.833, t = 6.3872, P 0.05) and exposure time (in years) (r = 0.8916, t = 8.3540, P 0.05) of the occupationally exposed workers.  相似文献   

20.
In this paper, the chemical characterization of PM10 and PM2.5 mass concentrations emitted by heterogeneous traffic in Chennai city during monsoon, winter and summer seasons were analysed. The 24-h averages of PM10 and PM2.5 mass concentrations, showed higher concentrations during the winter season (PM10 = 98 μg/m3; PM2.5 = 74 μg/m3) followed by the monsoon (PM10 = 87 μg/m3; PM2.5 = 56 μg/m3) and summer (PM10 = 77 μg/m3; PM2.5 = 67 μg/m3) seasons. The assessment of 24-h average PM10 and PM2.5 concentrations was indicated as violation of the world health organization (WHO standard for PM10 = 50 μg/m3 and PM2.5 = 25 μg/m3) and Indian national ambient air quality standards (NAAQS for PM10 = 100 μg/m3 and PM2.5 = 60 μg/m3).The chemicals characterization of PM10 and PM2.5 samples (22 samples) for each season were made for water soluble ions using Ion Chromatography (IC) and trace metals by Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-OES) instrument. Results showed the dominance of crustal elements (Ca, Mg, Al, Fe and K), followed by marine aerosols (Na and K) and trace elements (Zn, Ba, Be, Ca, Cd, Co, Cr, Cu, Mn, Ni, Pb, Se, Sr and Te) emitted from road traffic in both PM10 and PM2.5 mass. The ionic species concentration in PM10 and PM2.5 mass consists of 47-65% of anions and 35-53% of cations with dominance of SO42− ions. Comparison of the metallic and ionic species in PM10 and PM2.5 mass indicated the contributions from sea and crustal soil emissions to the coarse particles and traffic emissions to fine particles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号