首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Intrinsic vulnerability assessment to groundwater contamination is part of groundwater management in many areas of the world. However, popular assessment methods estimate vulnerability only qualitatively. To enhance vulnerability assessment, an approach for quantitative vulnerability assessment using numerical simulation of water flow and solute transport with transient boundary conditions and new vulnerability indicators are presented in this work. Based on a conceptual model of the unsaturated underground with distinct hydrogeological layers and site specific hydrological characteristics the numerical simulations of water flow and solute transport are applied on each hydrogeological layer with standardized conditions separately. Analysis of the simulation results reveals functional relationships between layer thickness, groundwater recharge and transit time. Based on the first, second and third quartiles of solute mass breakthrough at the lower boundary of the unsaturated zone, and the solute dilution, four vulnerability indicators are extracted. The indicator transit time t50 is the time were 50% of solute mass breakthrough passes the groundwater table. Dilution is referred as maximum solute concentration Cmax in the percolation water when entering the groundwater table in relation to the injected mass or solute concentration C0 at the ground surface. Duration of solute breakthrough is defined as the time period between 25% and 75% (t25%-t75%) of total solute mass breakthrough at the groundwater table. The temporal shape of the breakthrough curve is expressed with the quotient (t25%-t50%) / (t25%-t75%). Results from an application of this new quantitative vulnerability assessment approach, its advantages and disadvantages, and potential benefits for future groundwater management strategies are discussed.  相似文献   

2.
基于GIS的黄水河流域地下水脆弱性评价研究   总被引:2,自引:0,他引:2  
从影响地下水脆弱性的因素出发,结合国内外已有的地下水脆弱性影响因素、评价指标和评价标准,根据研究区的具体情况和可获得资料,确定了北方滨海地区地下水脆弱性的影响因素,建立了地下水脆弱性评价DRAMTICH指标体系和评价标准。以黄水河流域为例,进行了地下水脆弱性评价和编图,为当地今后制订地下水资源保护与管理、土地利用及城市规划等政策措施提供决策依据。该方法同样适用于其它类似地区的地下水脆弱性评价。  相似文献   

3.
Statistical techniques can be used in groundwater pollution problems to determine the relationships among observed contamination (impacted wells representing an occurrence of what has to be predicted), environmental factors that may influence it and the potential contamination sources. Determination of a threshold concentration to discriminate between impacted or non impacted wells represents a key issue in the application of these techniques. In this work the effects on groundwater vulnerability assessment by statistical methods due to the use of different threshold values have been evaluated. The study area (Province of Milan, northern Italy) is about 2000 km2 and groundwater nitrate concentration is constantly monitored by a net of about 300 wells. Along with different predictor factors three different threshold values of nitrate concentration have been considered to perform the vulnerability assessment of the shallow unconfined aquifer. The likelihood ratio model has been chosen to analyze the spatial distribution of the vulnerable areas. The reliability of the three final vulnerability maps has been tested showing that all maps identify a general positive trend relating mean nitrate concentration in the wells and vulnerability classes the same wells belong to. Then using the kappa coefficient the influence of the different threshold values has been evaluated comparing the spatial distribution of the resulting vulnerability classes in each map. The use of different threshold does not determine different vulnerability assessment if results are analyzed on a broad scale, even if the smaller threshold value gives the poorest performance in terms of reliability. On the contrary, the spatial distribution of a detailed vulnerability assessment is strongly influenced by the selected threshold used to identify the occurrences, suggesting that there is a strong relationship among the number of identified occurrences, the scale of the maps representing the predictor factors and the model efficiency in discriminating different vulnerable areas.  相似文献   

4.
The groundwater heat pump (GWHP) system is an open-loop system that draws water from a well or surface water, passes it through a heat exchanger and discharges the water into an injection well or nearby river. By utilizing the relatively stable temperature of groundwater, GWHP system can achieve a higher coefficient of performance and can save more energy than conventional air-source heat pump (ASHP) system. The performance of the system depends on the condition of groundwater, especially temperature and depth, which affect performance of the heat pump and system. For the optimization of design and operation of GWHP systems, it is necessary to develop a simulation tool which can predict groundwater and heat flow and evaluate system performance comprehensively. In this research, 3D numerical heat-water transfer simulation and experiments utilizing real-scale equipment has been conducted in order to develop the optimization method for GWHP systems. Simulation results were compared with the experimental results, and the validity of the simulation model was confirmed. Furthermore, several case studies for the optimal operation method have been conducted by calculating the coefficient of performance on various groundwater and well conditions.  相似文献   

5.
In this paper, a new methodology is proposed for optimally locating monitoring wells in groundwater systems in order to identify an unknown pollution source using monitoring data. The methodology is comprised of two different single and multi-objective optimization models, a Monte Carlo analysis, MODFLOW, MT3D groundwater quantity and quality simulation models and a Probabilistic Support Vector Machine (PSVM). The single-objective optimization model, which uses the results of the Monte Carlo analysis and maximizes the reliability of contamination detection, provides the initial location of monitoring wells. The objective functions of the multi-objective optimization model are minimizing the monitoring cost, i.e. the number of monitoring wells, maximizing the reliability of contamination detection and maximizing the probability of detecting an unknown pollution source. The PSVMs are calibrated and verified using the results of the single-objective optimization model and the Monte Carlo analysis. Then, the PSVMs are linked with the multi-objective optimization model, which maximizes both the reliability of contamination detection and probability of detecting an unknown pollution source. To evaluate the efficiency and applicability of the proposed methodology, it is applied to Tehran Refinery in Iran.  相似文献   

6.
在地下水脆弱性评价的GOD法和DRASTIC模型的基础上,提出了VLDA模型,其中V为包气带岩性(1ithology of vadose zone)、L为土地利用方式(pattern of land use)、D为地下水埋深(groundwater depth)、A为含水层特征(aquifer characterist...  相似文献   

7.
Attenuation processes controlling virus fate and transport in the vadose zone of karstified systems can strongly influence groundwater quality. This research compares the breakthrough of two bacteriophage tracers (H40/1 and T7), with contrasting properties, at subsurface monitoring points following application onto an overlying composite sequence of thin organic soil and weathered limestone (epikarst). Short pulse multi-tracer test results revealed that T7 (Source concentration, Co = 1.8 × 106 pfu/mL) and H40/1 (Co = 5.9 × 106 pfu/mL) could reach sampling points 10 m below ground less than 30 min after tracer application. Contrasting deposition rates, determined from simulated tracer responses, reflected the potential of the ground to differentially attenuate viruses. Prolonged application of both T7 (Co = 2.3 × 104 pfu/mL) and H40/1 (Co = 1.3 × 105 pfu/mL) over a five hour period during a subsequent test, in which ionic strength levels observed at monitoring points rose consistently, corresponded to a rapid rise in T7 levels, followed by a gradual decline before the end of tracer injection; this reflected reaction-limited deposition in the system. T7's response contrasted with that of H40/1, whose concentration remained constant over a three hour period before declining dramatically prior to the end of tracer injection. Subsequent application of lower ionic strength tracer-free flush water generated a rapid rise in H40/1 levels and a more gradual release of T7. Results highlight the benefits of employing prolonged injection multi-tracer tests for identifying processes not apparent from conventional short pulse tests. Study findings demonstrate that despite rapid transport rates, the epikarst is capable of physicochemical filtration of viruses and their remobilization, depending on virus type and hydrochemical conditions.  相似文献   

8.
基于熵权的集对分析方法在地下水脆弱性评价中的应用   总被引:2,自引:0,他引:2  
针对传统集对分析在评价地下水脆弱性时认为各指标权重相同的缺点,以DRASTIC模型指标体系作为基础,将熵值理论与集对分析相结合,在集对分析中使用熵值法确定权重系数,对地下水脆弱性进行了评价,实现了特性权重随样本数据的动态变化。应用实例表明,该方法评价地下水脆弱性能够充分反映样本数据本身对指标权重的影响,评价结果更加客观、可靠。  相似文献   

9.
Regional assessment of agricultural impacts on the environment requires systematic integration of a range of data. To overcome various limitations, a synoptic approach would be useful for preliminary assessment of potential impact or for deriving hypothetical relationships at geospatial basis. The objective of this case study was to demonstrate the effect of a synoptic approach using a fine-scale geoinformation system in geospatial assessment of environmental impact, viz., the nationwide impact of nitrogen fertiliser on groundwater quality. All farmlands throughout Japan were expressed as polygons comprising a few hectares, and the system integrated a wide range of basic geospatial datasets including topographic data, soil type, meteorological data, drainage conditions, and detailed land-use conditions. The case study showed that nitrogen load from fertilisers was closely related to nitrate nitrogen (NO3-N) of regional groundwater. A hypothetical regression model was derived from the synoptic data analysis. Results demonstrated the usefulness of comprehensive geospatial platforms for a wide range of agricultural and environmental applications.  相似文献   

10.
To achieve high heat pump efficiency, groundwater heat pump (GWHP) system uses groundwater, which is relatively stable AT temperature compared with outdoor air, as a heat source. However, it is difficult to meet annual heating and cooling loads using only groundwater as a heat source. In order to optimize the operation method of GWHP systems, it is necessary to develop a system utilizing both groundwater and air sources according to the building load conditions. Furthermore, during intermediate seasons (such as spring and autumn) with reduced heating and cooling loads, GWHP system is less efficient than air source heat pump (ASHP) system according to temperature conditions. In order to more efficiently use GWHP systems, it is necessary to develop a system which utilizes both groundwater and air sources according to temperature conditions and building loads. This research has developed a GWHP system that employs a hybrid heat pump system with groundwater wells using dual groundwater and air heat sources. In this paper, the annual performance of the developed system has been calculated, and several case studies have been conducted on the effect of introduction location, refrigerant and pumping rate. Furthermore, the coefficient of system performance and the effects on underground environments have been evaluated by real-scale experiment using two wells.  相似文献   

11.
The groundwater vulnerability to the pollution assessment was considered as an efficient tool to limit and to control its quantitative and qualitative degradation risks. The DRASTIC high, moderate and low groundwater vulnerability zones of the Sfax–Agareb basin (Tunisia) cover about 10, 29 and 61% of the study area, respectively. The validation of the DRASTIC vulnerability map was undertaken through comparison of areas of high nitrate concentration and their relative vulnerability index. The DRASTIC vulnerability map illustrates a good rate of coincidence between the nitrate concentration ranges and the various vulnerability classes as recognized by statistical analysis. The reliability of the final vulnerability map has been tested, showing a general positive trend relating the mean nitrate concentration in the wells to their relative vulnerability classes (R2=0.88). When correlating the 214 available groundwater nitrate concentrations to the DRASTIC index in these wells location, a significant positive correlation with Cor=0.55 was found.  相似文献   

12.
在分析研究区水文地质条件的基础上,基于水量平衡基本原理,本文应用FEFLOW建立了研究区地下水系统水流模型。利用观测井地下水位动态观测资料,对模型进行了识别并运用识别后的模型模拟了研究区在P=50%、75%、95%三种不同降水和径流保证率条件下的地下水系统水资源量的构成及变化。模拟结果表明:酒泉盆地地下水系统水资源长期处于负均衡状态,地下水位呈持续下降状态。因此提出,盆地内水利工程的建设及布局应考虑增加对地下水资源的有效补给,缓解地下水位的持续下降,以促进盆地内地下水资源的可持续开发。  相似文献   

13.
In this study, the DASTI method was used to evaluate vulnerability to groundwater pollution in the vicinity of Rabat, western Morocco. The model is based on the characterization of five intrinsic parameters: unsaturated zone thickness, saturated zone thickness and lithology, soil texture, topography and hydraulic gradient. A system of classes of the hydrogeological characteristics was applied to evaluate relative vulnerability to groundwater contamination and a susceptibility map was prepared based on land use and the vulnerability index map. The study showed the DASTI method (applied using IDRISI software) can serve as a tool to evaluate vulnerability to pollution and thus facilitate programs to protect groundwater resources. An erratum to this article can be found at  相似文献   

14.
High arsenic groundwater in the Quaternary aquifers of Datong Basin, northern China contain As up to 1820 µg/L and the high concentration plume is located in the slow flowing central parts of the basin. In this study we used hydrochemical data and sulfur isotope ratios of sulfate to better understand the conditions that are likely to control arsenic mobilization. Groundwater and spring samples were collected along two flow paths from the west and east margins of the basin and a third set along the basin flow path. Arsenic concentrations range from 68 to 670 µg/L in the basin and from 3.1 to 44 µg/L in the western and eastern margins. The margins have relatively oxidized waters with low contents of arsenic, relatively high proportions of As(V) among As species, and high contents of sulfate and uranium. By contrast, the central parts of the basin are reducing with high contents of arsenic in groundwater, commonly with high proportions of As(III) among As species, and low contents of sulfate and uranium. No statistical correlations were observed between arsenic and Eh, sulfate, Fe, Mn, Mo and U. While the mobility of sulfate, uranium and molybdenum is possibly controlled by the change in redox conditions as the groundwater flows towards central parts of the basin, the reducing conditions alone cannot account for the occurrence of high arsenic groundwater in the basin but it does explain the characteristics of arsenic speciation. With one exception, all the groundwaters with As(III) as the major As species have low Eh and those with As(V) have high Eh. Reductive dissolution of Fe-oxyhydroxides or reduction of As(V) are consistent with the observations, however no increase in dissolved Fe concentration was noted. Furthermore, water from the well with the highest arsenic was relatively oxidizing and contained mostly As(V). From previous work Fe-oxyhydroxides are speculated to exist as coatings rather than primary minerals.The wide range of δ34S[SO4] values (from − 2.5 to + 36.1‰) in the basin relative to the margins (from + 8‰ to + 15‰) indicate that sulfur is undergoing redox cycling. The highly enriched values point to sulfate reduction that was probably mediated by bacteria. The presence of monomethylarsonic acid (MMA) and dimethylarsinic acid (DMA) is also evidence of microbial reactions. The depleted signatures indicate that some oxidation of depleted sulfide occurred in the basin. It must be noted that the samples with depleted sulfur isotope values have very low sulfate concentrations and therefore even a small amount of sulfide oxidation will bias the ratio. No significant correlation was observed between δ34S[SO4] values and total arsenic contents when all the samples were considered. However, the wells in the central basin do appear to become enriched in δ34S[SO4] as arsenic concentration increases. Although there is evidence for sulfate reduction, it is clear that sulfate reduction does not co-precipitate or sequester arsenic. The one sample with high arsenic that is oxidizing cannot be explained by oxidation of pyrite and is likely an indication that there are multiple redox zones that control arsenic speciation but not necessarily its mobilization and contradict the possibility that Fe-oxyhydroxides sorb appreciable amounts of arsenic in this study area. It is evident that this basin like other two young sedimentary basins (Huhhot and Hetao in Inner Mongolia) of northern China with high arsenic groundwater is transporting arsenic at a very slow rate. The data are consistent with the possibility that the traditional models of arsenic mobilization, namely reductive dissolution of Fe-oxyhydroxides, reduction of As(V) to more mobile As(III), and bacteria mediated reactions, are active to varying degrees. It is also likely that different processes control arsenic mobilization at different locations of the basin and more detailed studies along major flow paths upgradient of the high arsenic aquifers will shed more light on the mechanisms.  相似文献   

15.
The nutrient concentrations and stoichiometry in a coastal bay/estuary are strongly influenced by the direct riverine discharge and the submarine groundwater discharge (SGD). To estimate the fluxes of submarine groundwater discharge into the Bamen Bay (BB) and the Wanquan River Estuary (WQ) of eastern Hainan Island, China, the naturally occurring radium isotope (226Ra) was measured in water samples collected in the bay/estuary in August 2007 and 2008. Based on the distribution of 226Ra in the surface water, a 3-end-member mixing model was used to estimate the relative contributions of the sources to these systems. Flushing times of 3.9 ± 2.7 and 12.9 ± 9.3 days were estimated for the BB and WQ, respectively, to calculate the radium fluxes for each system. Based on the radium fluxes from groundwater discharge and the Ra isotopic compositions in the groundwater samples, the estimated SGD fluxes were 3.4 ± 5.0 m3 s−1 in the BB and 0.08 ± 0.08 m3 s−1 in the WQ, or 16% and 0.06%, respectively, of the local river discharge. Using this information, the nutrient fluxes from the submarine groundwater discharge seeping into the BB and WQ regions were estimated. In comparison with the nutrient fluxes from the local rivers, the SGD-derived nutrient fluxes played a vital role in controlling the nutrient budgets and stoichiometry in the study area, especially in the BB.  相似文献   

16.
The effects of a dilute (ionic strength = 5 × 10−3 M) plume of treated sewage, with elevated levels (3.9 mg/L) of dissolved organic carbon (DOC), upon the pH-dependency and magnitude of bacterial transport through an iron-laden, quartz sand aquifer (Cape Cod, MA) were evaluated using sets of replicate, static minicolumns. Compared with uncontaminated groundwater, the plume chemistry diminished bacterial attachment under mildly acidic (pH 5.0-6.5) in-situ conditions, in spite of the 5-fold increase in ionic strength and substantively enhanced attachment under more alkaline conditions. The effects of the hydrophobic neutral and total fractions of the plume DOC; modest concentrations of fulvic and humic acids (1.5 mg/L); linear alkyl benzene sulfonate (LAS) (25 mg/L); Imbentin (200 μg/L), a model nonionic surfactant; sulfate (28 mg/L); and calcium (20 mg/L) varied sharply in response to relatively small changes in pH, although the plume constituents collectively decreased the pH-dependency of bacterial attachment. LAS and other hydrophobic neutrals (collectively representing only ∼3% of the plume DOC) had a disproportionately large effect upon bacterial attachment, as did the elevated concentrations of sulfate within the plume. The findings further suggest that the roles of organic plume constituents in transport or bacteria through acidic aquifer sediments can be very different than would be predicted from column studies performed at circumneutral pH and that the inorganic constituents within the plume cannot be ignored.  相似文献   

17.
灰坝辐射井排渗系统立体设计方法与数值仿真分析   总被引:1,自引:0,他引:1  
设置辐射井排渗系统是降低粉煤灰坝坝体浸润线的有效手段,已经在多个工程中应用,效果显著。决定辐射井的排渗效果的关键在于辐射管的布设,特别是在已成工程中设置辐射井时,由于灰面以下地形复杂,辐射管长度、角度均受制于地层情况和库底地形条件,传统的平面设计方法很难充分考虑这些因素,常常会导致辐射管布设不合理、排渗效果不理想。基于三维立体建模技术和布尔运算的灰坝辐射井排渗系统三维立体设计方法能有效地避免以上问题,达到精确设计并指导施工的目的,并可以与渗流仿真分析无缝结合,是进行辐射井设计和验证的先进而有效的手段。结合灰坝辐射井排渗工程实例,提出了辐射井三维立体设计方法,并采用数值仿真分析验证了设计的合理性,证明三维立体设计方法的可行性。  相似文献   

18.
Groundwater samples were collected in the Xiangjiang watershed in China from 2002 to 2008 to analyze concentrations of arsenic, cadmium, chromium, copper, iron, lead, mercury, manganese, and zinc. Spatial and seasonal trends of metal concentrations were then discussed. Combined with geostatistics, an ingestion risk assessment of metals in groundwater was performed using the dose-response assessment method and the triangulated irregular network (TIN) model. Arsenic concentration in groundwater had a larger variation from year to year, while the variations of other metal concentrations were minor. Meanwhile, As concentrations in groundwater over the period of 2002-2004 were significantly higher than that over the period of 2005-2007, indicating the improvement of groundwater quality within the later year. The hazard index (HI) in 2002 was also significantly higher than that in 2005, 2006, 2007 and 2008. Moreover, more than 80% of the study area recorded an HI of more than 1.0 for children, suggesting that some people will experience deleterious health effects from drinking groundwater in the Xiangjiang watershed. Arsenic and manganese were the largest contributors to human health risks (HHRs). This study highlights the value of long-term health risk evaluation and the importance of geographic information system (GIS) technologies in the assessment of watershed-scale human health risk.  相似文献   

19.
Liu WJ  Zhang YP  Li HM  Liu YH 《Water research》2005,39(5):787-794
Rain, fog drip, shallow soil water and groundwater were collected for two years (2002-2003) for stable isotopic analysis, at a tropical seasonal rain forest site in Xshuangbanna, Southwest China. The fog drip water ranged from -30 to +27 per thousand in deltaD and -6.2 to +1.9 per thousand in delta(18)O, conforms to the equation deltaD=7.64delta(18)O+14.32, and was thought to contain water that has been evaporated and recycled terrestrial meteoric water. The rain was isotopically more depleted, and ranged from -94 to -45 per thousand in deltaD, and -13.2 to -6.8 per thousand in delta(18)O. The shallow soil water had a composition usually between those of the rain and fog drip, and was assumed to be a mixture of the two waters. However, the soil water collected in dry season appeared to contain more fog drip water than that collected in rainy season. The groundwater in both seasons had an isotopic composition similar to rainwater, suggesting that fog drip water does not play a significant role as a source of recharge for the groundwater. This groundwater was thought to be recharged solely by rainwater.  相似文献   

20.
Zhang B  Song X  Zhang Y  Han D  Tang C  Yu Y  Ma Y 《Water research》2012,46(8):2737-2748
Water quality is the critical factor that influence on human health and quantity and quality of grain production in semi-humid and semi-arid area. Songnen plain is one of the grain bases in China, as well as one of the three major distribution regions of soda saline-alkali soil in the world. To assess the water quality, surface water and groundwater were sampled and analyzed by fuzzy membership analysis and multivariate statistics. The surface water were gather into class I, IV and V, while groundwater were grouped as class I, II, III and V by fuzzy membership analysis. The water samples were grouped into four categories according to irrigation water quality assessment diagrams of USDA. Most water samples distributed in category C1-S1, C2-S2 and C3-S3. Three groups were generated from hierarchical cluster analysis. Four principal components were extracted from principal component analysis. The indicators to water quality assessment were Na, HCO3, NO3, Fe, Mn and EC from principal component analysis. We conclude that surface water and shallow groundwater are suitable for irrigation, the reservoir and deep groundwater in upstream are the resources for drinking. The water for drinking should remove of the naturally occurring ions of Fe and Mn. The control of sodium and salinity hazard is required for irrigation. The integrated management of surface water and groundwater for drinking and irrigation is to solve the water issues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号