首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To assess the atmospheric environmental impacts of anthropogenic reactive nitrogen in the fast-developing Eastern China region, we measured atmospheric concentrations of nitrogen dioxide (NO2) and ammonia (NH3) as well as the wet deposition of inorganic nitrogen (NO3 and NH4+) and dissolved organic nitrogen (DON) levels in a typical agricultural catchment in Jiangsu Province, China, from October 2007 to September 2008. The annual average gaseous concentrations of NO2 and NH3 were 42.2 μg m3 and 4.5 μg m3 (0 °C, 760 mm Hg), respectively, whereas those of NO3, NH4+, and DON in the rainwater within the study catchment were 1.3, 1.3, and 0.5 mg N L1, respectively. No clear difference in gaseous NO2 concentrations and nitrogen concentrations in collected rainwater was found between the crop field and residential sites, but the average NH3 concentration of 5.4 μg m3 in residential sites was significantly higher than that in field sites (4.1 μg m3). Total depositions were 40 kg N ha1 yr1 for crop field sites and 30 kg N ha1 yr1 for residential sites, in which dry depositions (NO2 and NH3) were 7.6 kg N ha1 yr1 for crop field sites and 1.9 kg N ha1 yr1 for residential sites. The DON in the rainwater accounted for 16% of the total wet nitrogen deposition. Oxidized N (NO3 in the precipitation and gaseous NO2) was the dominant form of nitrogen deposition in the studied region, indicating that reactive forms of nitrogen created from urban areas contribute greatly to N deposition in the rural area evaluated in this study.  相似文献   

2.
With the aim to determine the presence of individual nitro-PAH contained in particles in the atmosphere of Mexico City, a monitoring campaign for particulate matter (PM10 and PM2.5) was carried out in Northern Mexico City, from April 2006 to February 2007. The PM10 annual median concentration was 65.2 μg m− 3 associated to 7.6 μg m− 3 of solvent-extractable organic matter (SEOM) corresponding to 11.4% of the PM10 concentration and 38.6 μg m− 3 with 5.9 μg m− 3 SEOM corresponding to 15.2% for PM2.5. PM concentration and SEOM varied with the season and the particle size. The quantification of nitro-polycyclic aromatic hydrocarbons (nitro-PAH) was developed through the standards addition method under two schemes: reference standard with and without matrix, the former giving the best results. The recovery percentages varied with the extraction method within the 52 to 97% range depending on each nitro-PAH. The determination of the latter was effected with and without sample purification, also termed fractioning, giving similar results. 8 nitro-PAH were quantified, and their sum ranged from 111 to 819 pg m− 3 for PM10 and from 58 to 383 pg m− 3 for PM2.5, depending on the season. The greatest concentration was for 9-Nitroanthracene in PM10 and PM2.5, detected during the cold-dry season, with a median (10th-90th percentiles) concentration in 235 pg m− 3 (66-449 pg m− 3) for PM10 and 73 pg m− 3 (18-117 pg m− 3) for PM2.5. The correlation among mass concentrations of the nitro-PAH and criteria pollutants was statistically significant for some nitro-PAH with PM10, SEOM in PM10, SEOM in PM2.5, NOX, NO2 and CO, suggesting either sources, primary or secondary origin. The measured concentrations of nitro-PAH were higher than those reported in other countries, but lower than those from Chinese cities. Knowledge of nitro-PAH atmospheric concentrations can aid during the surveillance of diseases (cardiovascular and cancer risk) associated with these exposures.  相似文献   

3.
Seven years (2000-2006) of monthly PM10 (particulate matter, d ≤ 10 μm), SO2, and NO2 concentrations are reported for Urumqi, the capital of Xinjiang in NW China. Considerably high mean annual concentrations have been observed, which ranged between 150 and 240 μg m− 3 (PM10), 31 and 50 μg m− 3 (NO2), and 49 and 160 μg m− 3 (SO2). The shapes of seasonal variation of all pollutants were remarkably similar; however, winter/summer ratios of concentrations were quite different for PM10 (2-3) and NO2 (≈ 4) compared to SO2 (up to 30). Very high consumption rates of fossil fuels for energy generation and domestic heating are mainly responsible for high annual pollution levels, as well as the (very) high winter/summer ratios. Detailed analysis of the 2000-2006 records of Urumqi's meteorological data resulted in inter-annual and seasonal frequency distributions of (a) (surface) inversion events, (b) heights of surface inversions, (c) stability classes of Urumqi's boundary layer, and (d) the “Air Stagnation Index (ASI)”. Urumqi's boundary layer is shown to be characterized by high mean annual and seasonal frequencies of (surface) inversions and by the dominance of stable dispersion classes. A further outcome of the meteorological analysis is the proof of Urumqi's strong diurnal wind system, which might have particularly contributed to the stabilization of the nocturnal boundary layer. Annual and seasonal variations of pollutant's concentrations are discussed in the context of occurrences of inversions, boundary layer, stability classes, and ASI. The trend of Urumqi's air pollution indicates a strong increase of mean annual concentrations 2000-2003, followed by a slight increase during 2003-2006. These are in strong contrast to (a) the growth of Urumqi's fleet of motor vehicles and (b) to the growing number of stable regimes of Urumqi's boundary layer climate during same period. It is concluded that the (regional and) local administrative technical countermeasures have efficiently lowered Urumqi's air pollution levels.  相似文献   

4.
Atmospheric deposition of different types of aerosols over the southern East Sea has received little attention in terms of seawater biogeochemistry. We investigated the concentrations of water-soluble ions (NO3, NH4+ and nss-SO42−) in the aerosols associated with air mass transport patterns arriving at the east coast of Korea, adjacent to the southern East Sea, in order to determine source regions affecting chemical composition of aerosols and to assess the atmospheric pathway as a significant controlling mechanism of the biogeochemistry in this marginal sea. Concentrations of certain elements (Al, Na, Ca, V, Zn and Pb) together with the water-soluble ions were measured in the aerosol samples (n = 34) collected during the period March 2002-February 2003. The geometric mean concentrations of the water-soluble ions were NO3 2.98 (0.56-16.22), NH4+ 1.42 (0.37-6.73) and nss-SO42− 2.47 (0.17-17.35) μg m− 3. The backward trajectories revealed that air masses passing slowly over eastern China contributed more to increases in the concentrations of water-soluble ions than those associated with fast-moving northwesterly and maritime winds. Therefore, the correlation between the NH4+ and NO3+ concentrations increased, suggesting that gas-phase NH3 and HNO3 was forming fine-mode NH4NO3. The atmospheric N input accounted for ∼ 10% of new production over the southern East Sea on an annual scale, while it accounted for over ∼ 25% of new production during the water column stratification seasons (summer and early fall).  相似文献   

5.
PM2.5 (particle with an aerodynamic diameter less than 2.5 µm) was measured in different microenvironments of Hong Kong (including one urban tunnel, one Hong Kong/Mainland boundary roadside site, two urban roadside sites, and one urban ambient site) in 2003. The concentrations of organic carbon (OC), elemental carbon (EC), water-soluble ions, and up to 40 elements (Na to U) were determined. The average PM2.5 mass concentrations were 229 ± 90, 129 ± 95, 69 ± 12, 49 ± 18 µg m− 3 in the urban tunnel, cross boundary roadside, urban roadside, and urban ambient environments, respectively. Carbonaceous particles (sum of organic material [OM] and EC) were the dominant constituents, on average, accounting for ∼ 82% of PM2.5 emissions in the tunnel, ∼ 70% at the three roadside sites, and ∼ 48% at the ambient site, respectively. The OC/EC ratios were 0.6 ± 0.2 and 0.8 ± 0.1 at the tunnel and roadside sites, respectively, suggesting carbonaceous aerosols were mainly from vehicle exhausts. Higher OC/EC ratio (1.9 ± 0.7) occurred at the ambient site, indicating contributions from secondary organic aerosols. The PM2.5 emission factor for on-road diesel-fueled vehicles in the urban area of Hong Kong was 257 ± 31 mg veh− 1 km− 1, with a composition of ∼ 51% EC, ∼ 26% OC, and ∼ 9% SO4=. The other inorganic ions and elements made up ∼ 11% of the total PM2.5 emissions. OC composed the largest fraction (∼ 51%) in gasoline and liquid petroleum gas (LPG) emissions, followed by EC (∼ 19%). Diesel engines showed higher emission rates than did gasoline and LPG engines for most pollutants, except for V, Br, Sb, and Ba.  相似文献   

6.
In order to investigate the pollution situation for a fast-developing industrial area at its first stage, a systematic study on the gaseous and particulate pollution in the Ordos Region of Inner Mongolia was performed during 9-24 September 2005. The gases SO2, NOx, O3, CO, and the particulates PM10 and PM2.5 were sampled at five sites in Ordos. Species measured in aerosol were 21 elements, 10 ions, organic carbon (OC), elemental carbon (EC), and the acid-buffering capacity of particulates. Possible markers of sources for different transport directions were firstly investigated, which was a new attempt for clarification of regional transport with different directions. None of the gases exceeded the national standards of China. PM2.5 contributed most to PM10 at the background site, indicating the greatest contribution of regional transport. Organic matter, crustal material, and sulfate ion were the three dominant species of aerosol, followed by EC, NO3, NH4+, trace elements, and other ions. The acidity of PM2.5 was higher than that of PM10, and the buffering capacity in PM10 was higher than that in PM2.5. Four peaks of pollution aerosol were observed during the 3-week study sampling period, separated by periods of cleaner air. Back-trajectories revealed that the peaks came from the south and the cleaner air from the north. It is the first time to find different markers for aerosols from different transport directions in Ordos. S and Pb, as well as SO42−, NO3, and NH4+ appeared to be good markers of southern aerosol in the Ordos, since all showed four clear peaks on days dominated by southern direction. Extremely high peaks of Al and Ti on the 16th and 17th, especially at the dust-monitoring site, indicated good markers for soil dust. Ca and Mg showed earlier peaks on the 16th at the western site, indicating possible markers for western aerosol.  相似文献   

7.
Wang C  Zhu L  Wei M  Chen P  Shan G 《Water research》2012,46(3):845-853
Bi2WO6 displayed great photolytic degradation efficiency to bisphenol A (BPA) under simulated solar light irradiation but its reaction mechanism and the impacts of coexisting substances on the degradation remain unclear. In present study, the reaction mechanism was investigated using DMPO spin-trapping ESR spectra and experiments with scavengers of hydroxyl radicals (OH) and holes. The results supported that hole oxidation mainly governed the photodegradation process. As a common humic substance in natural water, humic acid accelerated the degradation of BPA when its concentration was 1 mg/L, while the photodegradation was impeded with the increase of humic acid concentration in the range of 5-20 mg/L. Almost all anions, including NO3, HCO3, Cl, SO42− inhibited the degradation of BPA by Bi2WO6 and their inhibition effects followed the order of SO42− > Cl > HCO3 > NO3. Cations of Na+, K+, Ca2+ and Mg2+ displayed slight suppressing effect on BPA degradation mainly due to the impact of Cl coexisting in the solution. However, Cu2+ hindered the BPA photodegradation heavily. Fe3+ and H2O2 affected the photodegradation in a complicated way: they suppressed or promoted the photodegradation depending on their concentrations. This could be the result of competition between photolyitc hole generated by Bi2WO6 and OH produced by Fe3+ or H2O2.  相似文献   

8.
Particulate matter and gaseous pollutants in residences in Antwerp, Belgium   总被引:1,自引:0,他引:1  
This comprehensive study, a first in Flanders, Belgium, aimed at characterizing the residential indoor air quality of subgroups that took part in the European Community Respiratory Health Survey (ECRHS I—1991 and ECHRS II—1996) questionnaire-based asthma and related illnesses studies. This pilot study aimed at the evaluation of particulate matter and various inorganic gaseous compounds in residences in Antwerp. In addition personal exposure to the gaseous compounds of one individual per residence was assessed. The main objective was to obtain some base-line pollutant levels and compare these with studies performed in other cities, to estimate the indoor air quality in residences in Antwerp. Correlations between the various pollutant levels, indoor:outdoor ratios and the micro-environments of each residence were investigated. This paper presents results on indoor and ambient PM1, PM2.5 and PM10 mass concentrations, its elemental composition in terms of K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Br, Pb, Al, Si, S and Cl and the water-soluble ionic concentrations in terms of SO42−, NO32−, Cl, NH4+ K+, Ca2+. In addition, indoor, ambient and personal exposure levels of the gases NO2, SO2, and O3 were determined. Elevated indoor:outdoor ratios were found for NO2 in residences containing gas stoves. In smoker's houses increased PM concentrations of 58 and 43% were found for the fine and coarse fractions respectively. Contrary to the fact that all I/O ratios of the registered elements in each individual house were significantly correlated to each other, no correlation could be established between the I/O ratios of the different houses, thus indicating a unique micro-environment for each residence. Linear relationships between the particulate matter elemental composition, SO2 and O3 levels indoors and outdoors could be established. No linear relationships between indoor and outdoor NO2 and particulate mass concentrations were found.  相似文献   

9.
The effect of chemical oxygen demand/sulfate (COD/SO42−) ratio on fermentative hydrogen production using enriched mixed microflora has been studied. The chemostat system maintained with a substrate (glucose) concentration of 15 g COD L−1 exhibited stable H2 production at inlet sulfate concentrations of 0-20 g L−1 during 282 days. The tested COD/SO42− ratios ranged from 150 to 0.75 (with control) at pH 5.5 with hydraulic retention time (HRT) of 24, 12 and 6 h. The hydrogen production at HRT 6 h and pH 5.5 was not influenced by decreasing the COD/SO42− ratio from 150 to 15 (with control) followed by noticeable increase at COD/SO42− ratios of 5 and 3, but it was slightly decreased when the COD/SO42− ratio further decreased to 1.5 and 0.75. These results indicate that high sulfate concentrations (up to 20,000 mg L−1) would not interfere with hydrogen production under the investigated experimental conditions. Maximum hydrogen production was 2.95, 4.60 and 9.40 L day−1 with hydrogen yields of 2.0, 1.8 and 1.6 mol H2 mol−1 glucose at HRTs of 24, 12 and 6 h, respectively. The volatile fatty acid (VFA) fraction produced during the reaction was in the order of butyrate > acetate > ethanol > propionate in all experiments. Fluorescence In Situ Hybridization (FISH) analysis indicated the presence of Clostridium spp., Clostridium butyricum, Clostridium perfringens and Ruminococcus flavefaciens as hydrogen producing bacteria (HPB) and absence of sulfate reducing bacteria (SRB) in our study.  相似文献   

10.
Biological ammoniacal-nitrogen (NH4+-N) and organic carbon (TOC) treatment was investigated in replicated mesoscale attached microbial film trickling filters, treating strong and weak strength landfill leachates in batch mode at temperatures of 3, 10, 15 and 30 °C. Comparing leachates, rates of NH4+-N reduction (0.126-0.159 g m− 2 d− 1) were predominantly unaffected by leachate characteristics; there were significant differences in TOC rates (0.072-0.194 g m− 2 d− 1) but no trend relating to leachate strength. Rates of total oxidised nitrogen (TON) accumulation (0.012-0.144 g m− 2 d− 1) were slower for strong leachates. Comparing temperatures, treatment rates varied between 0.029-0.319 g NH4+-N m− 2 d− 1 and 0.033-0.251 g C m− 2 d− 1 generally increasing with rising temperatures; rates at 3 °C were 9 and 13% of those at 30 °C for NH4+-N and TOC respectively. For the weak leachates (NH4+-N < 140 mg l− 1) complete oxidation of NH4+-N was achieved. For the strong leachates (NH4+-N 883-1150 mg l− 1) a biphasic treatment response resulted in NH4+-N removal efficiencies of between 68 and 88% and for one leachate no direct transformation of NH4+-N to TON in bulk leachate. The temporal decoupling of NH4+-N oxidation and TON accumulation in this leachate could not be fully explained by denitrification, volatilisation or anammox, suggesting temporary storage of N within the treatment system. This study demonstrates that passive aeration trickling filters can treat well-buffered high NH4+-N strength landfill leachates under a range of temperatures and that leachate strength has no effect on initial NH4+-N treatment rates. Whether this approach is a practicable option depends on a range of site specific factors.  相似文献   

11.
Atmospheric particulate matter (PM2.5, PM10 and TSP) were sampled synchronously during three monitoring campaigns from June 2007 to February 2008 at a coastal site in TEDA of Tianjin, China. Chemical compositions including 19 elements, 6 water-solubility ions, organic and elemental carbon were determined. principle components analysis (PCA) and chemical mass balance modeling (CMB) were applied to determine the PM sources and their contributions with the assistance of NSS SO42, the mass ratios of NO3 to SO42 and OC to EC. Air mass backward trajectory model was compared with source apportionment results to evaluate the origin of PM. Results showed that NSS SO42 values for PM2.5 were 2147.38, 1701.26 and 239.80 ng/m3 in summer, autumn and winter, reflecting the influence of sources from local emissions. Most of it was below zero in summer for PM10 indicating the influence of sea salt. The ratios of NO3 to SO42 was 0.19 for PM2.5, 0.18 for PM10 and 0.19 for TSP in winter indicating high amounts of coal consumed for heating purpose. Higher OC/EC values (mostly larger than 2.5) demonstrated that secondary organic aerosol was abundant at this site. The major sources were construction activities, road dust, vehicle emissions, marine aerosol, metal manufacturing, secondary sulfate aerosols, soil dust, biomass burning, some pharmaceutics industries and fuel-oil combustion according to PCA. Coal combustion, marine aerosol, vehicular emission and soil dust explained 5-31%, 1-13%, 13-44% and 3-46% for PM2.5, PM10 and TSP, respectively. Backward trajectory analysis showed air parcels originating from sea accounted for 39% in summer, while in autumn and winter the air parcels were mainly related to continental origin.  相似文献   

12.
To characterise atmospheric input of chemical contaminants to urban rainwater tanks, bulk deposition (wet + dry deposition) was collected at sixteen sites in Brisbane, Queensland, Australia on a monthly basis during April 2007-March 2008 (N = 175). Water from rainwater tanks (22 sites, 26 tanks) was also sampled concurrently. The deposition/tank water was analysed for metals, soluble anions and selected samples were additionally analysed for PAHs, pesticides, phenols, organic & inorganic carbon. Flux (mg/m2/d) of total solids mass was found to correlate with average daily rainfall (R2 = 0.49) indicating the dominance of the wet deposition contribution to total solids mass. On average 97% of the total mass of analysed components was accounted for by Cl (25.0%), Na (22.6%), organic carbon (20.5%), NO3 (10.5%), SO42− (9.8%), inorganic carbon (5.7%), PO43− (1.6%) and NO2 (1.5%). For other minor elements the average flux from highest to lowest was in the order of Fe > Al > Zn > Mn > Sr > Pb > Ba > Cu > Se. There was a significant effect of location on flux of K, Sb, Sn, Li, Mn, Fe, Cu, Zn, Ba, Pb and SO42− but not other metals or anions. Overall the water quality resulting from the deposition (wet + dry) was good but 10.3%, 1.7% and 17.7% of samples had concentrations of Pb, Cd and Fe respectively greater than the Australian Drinking Water Guidelines (ADWG). This generally occurred in the drier months. In comparison 14.2% and 6.1% of tank samples had total Pb and Zn concentrations exceeding the guidelines. The cumulative mean concentration of lead in deposition was on average only 1/4 of that in tank water over the year at a site with high concentrations of Pb in tank water. This is an indication that deposition from the atmosphere is not the major contributor to high lead concentrations in urban rainwater tanks in a city with reasonable air quality, though it is still a significant portion.  相似文献   

13.
Tao Yu 《Water research》2010,44(9):2823-2830
Three submerged membrane bioreactors (MBRs) were operated continuously for 230 days by feeding with synthetic inorganic wastewater (NH4+-N, 100 mg L−1) under different solids retention times (SRTs. M30d, 30 days; M90d, 90 days; Minfinite, no sludge purge) to examine the influence of SRT on nitrification performance and microbial characteristics. All the reactors could oxidize NH4+-N to NO3-N effectively without accumulation of NO2-N. M30d with the shortest SRT showed significantly higher specific ammonium oxidizing rate (SAOR, 0.22 kg NH4+-N kg−1 MLSS day−1) and specific nitrate forming rate (SNFR, 0.13 kg NO3-N kg−1 MLSS day−1) than the other two MBRs (0.12-0.14 kg NO3-N kg−1 MLSS day−1 and 0.042-0.068 kg NO3-N kg−1 MLSS day−1, respectively). Short SRT led to low extracellular polymeric substances (EPS) concentration and long operating cycle. The nitrite oxidizing bacteria (NOB) ratios by both the fluorescence in situ hybridization (FISH) (3.6% for M30d and 2.1-2.2% for M90d and Minfinite) and MPN (1.4 × 107 cells g−1 MLSS for M30d and 6.2 × 105 and 2.7 × 104 cells g−1 MLSS for M90d and Minfinite) analyses showed that M30d favored the accumulation of NOB, which was in accordance with the SNFR result. However, the ammonia oxidizing bacteria (AOB) ratios (3.5%, 3.2% and 4.9% for M30d, M90d and Minfinite) were not in accordance with the SAOR result. PCR-DGGE, clone library and FISH results showed that the fast-growing Nitrosomonas and Nitrobacter sp. were the dominant AOB and NOB, respectively for M30d, while considerable slow-growing Nitrosospira and Nitrospira sp. existed in Minfinite, which might be an important reason why Minfinite had a low SAOR and SNFR.  相似文献   

14.

Background

There is a need to understand much more about the geographic variation of air pollutants. This requires the ability to extrapolate from monitoring stations to unsampled locations. The aim was to assess methods to develop accurate and high resolution maps of background air pollution across the EU.

Methods

We compared the validity of ordinary kriging, universal kriging and regression mapping in developing EU-wide maps of air pollution on a 1 × 1 km resolution. Predictions were made for the year 2001 for nitrogen dioxide (NO2), fine particles < 10 µm (PM10), ozone (O3), sulphur dioxide (SO2) and carbon monoxide (CO) using routine monitoring data in Airbase. Predictor variables from EU-wide databases were land use, road traffic, population density, meteorology, altitude, topography and distance to sea. Models were developed for the global, rural and urban scale separately. The best method to model concentrations was selected on the basis of predefined performance measures (R2, Root Mean Square Error (RMSE)).

Results

For NO2, PM10 and O3 universal kriging performed better than regression mapping and ordinary kriging. Validation of the final universal kriging estimates with results from all validation sites gave R2-values and RMSE-values of 0.61 and 6.73 µg/m3 for NO2; 0.45 and 5.19 µg/m3 for PM10; and 0.70 and 7.69 µg/m3 for O3. For SO2 and CO none of the three methods was able to provide a satisfactory prediction.

Conclusion

Reasonable prediction models were developed for NO2, PM10 and O3 on an EU-wide scale. Our study illustrates that it is possible to develop detailed maps of background air pollution using EU-wide databases.  相似文献   

15.
Biocide-containing anti-fouling paints are regulated and approved according to the added active ingredients, such as Cu. Biocide-free paints are considered to be less environmentally damaging and do not need an approval. Zn, a common ingredient in paints with the potential of causing adverse effects has received only minor attention. Laboratory experiments were conducted in artificial brackish seawater (ASW) and natural brackish seawater (NSW) to quantify release rates of Cu and Zn from biocide-containing and biocide-free labeled eroding anti-fouling paints used on commercial vessels as well as leisure boats. In addition, organisms from three trophic levels, the crustacean Nitocra spinipes, the macroalga Ceramium tenuicorne and the bacteria Vibrio fischeri, were exposed to Cu and Zn to determine the toxicity of these metals. The release rate of Cu in NSW was higher from the paints for professional use (3.2-3.6 µg cm2 d− 1) than from the biocide leaching leisure boat paint (1.1 µg cm2 d− 1). Biocide-free paints did leach considerably more Zn (4.4-8.2 µg cm2 d− 1) than biocide-containing leisure boat paint (3.0 µg cm2 d− 1) and ship paints (0.7-2.0 µg cm2 d− 1). In ASW the release rates of both metals were notably higher than in NSW for most tested paints. The macroalga was the most sensitive species to both Cu (EC50 = 6.4 µg l− 1) and Zn (EC50 = 25 µg l− 1) compared to the crustacean (Cu, LC50 = 2000 µg l− 1 Zn, LC50 = 890 µg l− 1), and the bacteria (Cu, EC50 = 800 µg l− 1 and Zn, EC50 = 2000 µg l− 1). The results suggest that the amounts of Zn and Cu leached from anti-fouling paints may attain toxic concentrations in areas with high boat density. To fully account for potential ecological risk associated with anti-fouling paints, Zn as well as active ingredients should be considered in the regulatory process.  相似文献   

16.
Previous exposure studies have shown considerable inter-subject variability in personal-ambient associations. This paper investigates exposure factors that may be responsible for inter-subject variability in these personal-ambient associations. The personal and ambient data used in this paper were collected as part of a personal exposure study conducted in Boston, MA, during 1999-2000. This study was one of a group of personal exposure panel studies funded by the U.S. Environmental Protection Agency's National Exposure Research Laboratory to address areas of exposure assessment warranting further study, particularly associations between personal exposures and ambient concentrations of particulate matter and gaseous co-pollutants. Twenty-four-hour integrated personal, home indoor, home outdoor and ambient sulfate, elemental carbon (EC), PM2.5, ozone (O3), nitrogen dioxide (NO2) and sulfur dioxide were measured simultaneously each day. Fifteen homes in the Boston area were measured for 7 days during winter and summer. A previous paper explored the associations between personal-indoor, personal-outdoor, personal-ambient, indoor-outdoor, indoor-ambient and outdoor-ambient PM2.5, sulfate and EC concentrations. For the current paper, factors that may affect personal exposures were investigated, while controlling for ambient concentrations. The data were analyzed using mixed effects regression models. Overall personal-ambient associations were strong for sulfate during winter (p < 0.0001) and summer (p < 0.0001) and PM2.5 during summer (p < 0.0001). The personal-ambient mixed model slope for PM2.5 during winter but was not significant at p = 0.10. Personal exposures to most pollutants, with the exception of NO2, increased with ventilation and time spent outdoors. An opposite pattern was found for NO2 likely due to gas stoves. Personal exposures to PM2.5 and to traffic-related pollutants, EC and NO2, were higher for those individuals living close to a major road. Both personal and indoor sulfate and PM2.5 concentrations were higher for homes using humidifiers. The impact of outdoor sources on personal and indoor concentrations increased with ventilation, whereas an opposite effect was observed for the impact of indoor sources.  相似文献   

17.
Three monthly 24-hour samples of airborne aerosols (PM10 and PM2.5) were collected at an urban and a rural site of the North central, semi-arid part of India during May 2006 to March 2008. Seven trace metals (Pb, Zn, Ni, Fe, Mn, Cr and Cu) were determined for both sizes. The annual mean concentration for PM10 was 154.2 µg/m3 and 148.4 µg/m3 at urban and rural sites whereas PM2.5 mean concentration was 104.9 µg/m3 and 91.1 µg/m3 at urban and rural sites, respectively. Concentrations of PM10 and PM2.5 have been compared with prescribed WHO standards and NAAQS given by CPCB India and were found to be higher. Weekday/weekend variations of PM10 and PM2.5 have been studied at both monitoring sites. Lower particulate pollutant levels were found during weekends, which suggested that anthropogenic activities are major contributor of higher ambient particulate concentration during weekdays. Significant seasonal variations of particulate pollutants were obtained using the daily average concentration of PM10 and PM2.5 during the study period. PM2.5/PM10 ratios at urban and rural sites were also determined during the study period, which also showed variation between the seasons. Three factors have been identified using Principal Component Analysis at the sampling sites comprising resuspension of road dust due to vehicular activities, solid waste incineration, and industrial emission at urban site whereas resuspension of soil dust due to vehicular emission, construction activities and wind blown dust carrying industrial emission, were common sources at rural site.  相似文献   

18.
In this paper, the chemical characterization of PM10 and PM2.5 mass concentrations emitted by heterogeneous traffic in Chennai city during monsoon, winter and summer seasons were analysed. The 24-h averages of PM10 and PM2.5 mass concentrations, showed higher concentrations during the winter season (PM10 = 98 μg/m3; PM2.5 = 74 μg/m3) followed by the monsoon (PM10 = 87 μg/m3; PM2.5 = 56 μg/m3) and summer (PM10 = 77 μg/m3; PM2.5 = 67 μg/m3) seasons. The assessment of 24-h average PM10 and PM2.5 concentrations was indicated as violation of the world health organization (WHO standard for PM10 = 50 μg/m3 and PM2.5 = 25 μg/m3) and Indian national ambient air quality standards (NAAQS for PM10 = 100 μg/m3 and PM2.5 = 60 μg/m3).The chemicals characterization of PM10 and PM2.5 samples (22 samples) for each season were made for water soluble ions using Ion Chromatography (IC) and trace metals by Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-OES) instrument. Results showed the dominance of crustal elements (Ca, Mg, Al, Fe and K), followed by marine aerosols (Na and K) and trace elements (Zn, Ba, Be, Ca, Cd, Co, Cr, Cu, Mn, Ni, Pb, Se, Sr and Te) emitted from road traffic in both PM10 and PM2.5 mass. The ionic species concentration in PM10 and PM2.5 mass consists of 47-65% of anions and 35-53% of cations with dominance of SO42− ions. Comparison of the metallic and ionic species in PM10 and PM2.5 mass indicated the contributions from sea and crustal soil emissions to the coarse particles and traffic emissions to fine particles.  相似文献   

19.
The high levels in developing countries and the apparent scale of its impact on the global burden of disease underline the importance of particulate as an environmental health risk and the consequence need for monitoring them particularly in indoor microenvironment. PM2.5 μm, 1.0 μm, 0.5 μm and 0.25 μm were measured inside and outside 14 residential homes located in different microenvironment during a six-month period (October 2007–March 2008) in Agra located in the central region of India. Particulate mass concentrations were measured using Grimm aerosol spectrometer for 24 h inside and outside the homes located in roadside, rural and urban area, along with the field survey study done in the same region. The indoor average concentrations recorded for PM2.5, PM1.0, PM0.5 and PM0.25 were maximum for the rural homes (173.03 μgm−3, 133.26 μgm−3, 96.02 μgm−3, 8.56 μgm−3) followed by roadside homes (137.93 μgm−3, 117.09 μgm−3, 68.17 μgm−3, 8.55 μgm−3) and then by urban homes (135.55 μgm−3, 102.92 μgm−3, 38.38 μgm−3, 6.35 μgm−3). The average I/O ratios for PM2.5, PM1.0, PM0.5 and PM0.25 in roadside and rural areas were close to or above 1.00 and less than 1.00 for urban areas. The I/O ratios obtained were linked to the indoor activities using occupant's diary entries. The positive values of correlation coefficient (r) also indicated the indoor concentrations of particulate matter were correlated with the corresponding outdoor concentrations.  相似文献   

20.
Compliance with air quality standards requires control of source emissions: fine exhaust particles are already subject to regulation but vehicle fleets increase whilst the non-exhaust emissions are totally uncontrolled. Emission inventories are scarce despite their suitability for researchers and regulating agencies for managing air quality and PM reduction measures. Only few countries in Europe proposed street cleaning as a possible control measure, but its effectiveness is still far to be determined.This study offers first estimates of Real-world Emission Factors for PM10 and brake-wear elements and the effect on PM10 concentrations induced by intense street cleaning trials.A straightforward campaign was carried out in the city of Barcelona with hourly elemental composition of fine and coarse PM to detect any short-term effect of street cleaning on specific tracers of non-exhaust emissions. Samples were analyzed by Particle Induced X-Ray Emission.Real-world Emission Factor for PM10 averaged for the local fleet resulted to be 97 mg veh− 1 km− 1. When compared to other European studies, our EF resulted higher than what found in UK, Germany, Switzerland and Austria but lower than Scandinavian countries. For brake-related elements, total EFs were estimated, accounting for the sum of direct and resuspension emissions, in 7400, 486, 106 and 86 μg veh− 1 km− 1, respectively for Fe, Cu, Sn and Sb. In PM2.5Fe and Cu emission factors were respectively 4884 and 306 μg veh− 1 km− 1.Intense street cleaning trials evidenced a PM10 reduction at kerbside of 3 μg m− 3 (mean daily levels of 54 μg m− 3), with respect to reference stations. It is important to remark that such benefit could only be detected in small time-integration periods (12:00-18:00) since in daily values this benefit was not noticed. Hourly PM elemental monitoring allowed the identification of mineral and brake-related metallic particles as those responsible of the PM10 reduction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号