首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A risk assessment report (RAR) on zinc and zinc compounds has recently been prepared in the framework of the European Union (EU) Council Regulation 793/93/EEC on Existing Chemicals. The EU Scientific Committee on Human and Environmental Risks (SCHER) has, however, expressed some fundamental, science-based concerns about the approach followed and the conclusions. The main objective of the present study was to assess the potential environmental risks associated with current use patterns of Zn in nine EU river basins in Germany, France and Belgium, thereby using more advanced methodologies which are largely in line with the recommendations made by SCHER. This included (i) avoiding working with measured Zn concentrations from monitoring stations that were potentially influenced by point sources and/or historical contamination, (ii) the full bioavailability normalization of all chronic ecotoxicity data to river basin specific physico-chemistry using biotic ligand models (BLM), prior to deriving predicted no effect concentrations (PNEC) with the species sensitivity distribution (SSD) approach, and (iii) the use of a probabilistic framework for risk characterization. Further, a total risk approach instead of an added risk approach was used, and the PNEC was equated to the HC5-50 without an additional assessment factor. Based on monitoring data we estimated predicted environmental concentrations (PEC) for the different EU river basins between 1.3 and 14.6 µg dissolved Zn/L. PNEC values varied between 22.1 and 46.1 µg dissolved Zn/L. This resulted in deterministic risk characterization ratios (RCR) that were below 1 in all river basins, suggesting that there is no deterministic regional risk associated with current use patterns of Zn in these river basins. With the probabilistic approach we identified rather limited risks, i.e., between < 0.4 and 18.3%. When the EU RAR approach was applied to the same monitoring datasets, deterministic risks were found in different river basins. A detailed analysis showed that this different deterministic conclusion of risk is mainly due to the fact that the EU RAR (i) uses an additional assessment factor of 2 to derive the PNEC and (ii) uses a more conservative approach for implementing bioavailability (BioF approach). We argue that the larger conservatism in the EU RAR mainly originates from decisions made to deal in a pragmatic way with (i) uncertainty related to the across-species extrapolation of BLMs and (ii) the relatively high sensitivity of some multi-species toxicity studies.  相似文献   

2.
Water levels in the lower reaches of most rivers are controlled by the interaction of fluvial flows and tides. Assessment of the risk of over-bank inundation therefore requires an estimation of the probability of experiencing combinations of river floods and high tides and calculation of the water levels resulting from their interaction. This may be achieved by numerical integration of the marginal probability distributions of river floods and sea-levels, but this is complex mathematically and requires explicit knowledge of the correlation structure. In this paper a solution is developed for risk assessment in the lower River Roding, by reconstructing the historical water levels from river flow and tidal records using a hydraulic model. The resulting water-level series is then analysed statistically to estimate the probability that certain critical levels will be exceeded. The model allows for operation of the River Roding's flood-protection barrier and for the effects of a general rise in sea level.  相似文献   

3.
A series of sorption and leaching tests were performed to investigate the uptake and release of zinc from Lake Michigan sediments. In general it was found that these sediments had a moderate affinity for zinc in the neutral to slightly alkaline pH range. If the pH of the sediment slurry was decreased to 6 or less, zinc release was found. Increasing the pH to 7 or greater did not result in the zinc being readsorbed. The sorption of zinc by the sediments was rapid, usually complete in 1–2 h. These results are in accord with the results of the other studies conducted with other waters and sediments. Field observations in Lake Michigan have shown that high concentrations of zinc in tributary waters rapidly decrease within a few kilometers of the tributary mouth to an essentially constant lake-wide concentration. This concentration ranged from 2 to 4 times the typical tributary concentrations. These results may be explained by the uptake of zinc by the suspended sediment in the river and nearshore waters, with settling to the quiescent sediment-water interfaces of the deeper areas of Lake Michigan, often far removed from the tributary input.The rapid, essentially irreversible sorption of zinc by aquatic sediments raises important questions concerning the appropriateness of using the US EPA water quality criterion for zinc as a state water quality standard. The US EPA criterion is based on the total zinc concentration. In many aquatic systems most of the zinc would be adsorbed by suspended sediment, and therefore unavailable to aquatic organisms. It is recommended that the US EPA criteria be used to indicate potential zinc water quality problems where “excessive” concentrations of zinc are investigated on a site-specific basis, using a hazard assessment approach designed to evaluate the actual impact of the zinc in impairing beneficial uses of the water.  相似文献   

4.
Great rivers of the central United States (Upper Mississippi, Missouri, and Ohio rivers) are valuable economic and cultural resources, yet until recently their ecological condition has not been well quantified. In 2004-2005, as part of the Environmental Monitoring and Assessment Program for Great River Ecosystems (EMAP-GRE), we measured legacy organochlorines (OCs) (pesticides and polychlorinated biphenyls, PCBs) and emerging compounds (polybrominated diphenyl ethers, PBDEs) in whole fish to estimate human and wildlife exposure risks from fish consumption. PCBs, PBDEs, chlordane, dieldrin and dichlorodiphenyltrichloroethane (DDT) were detected in most samples across all rivers, and hexachlorobenzene was detected in most Ohio River samples. Concentrations were highest in the Ohio River, followed by the Mississippi and Missouri Rivers, respectively. Dieldrin and PCBs posed the greatest risk to humans. Their concentrations exceeded human screening values for cancer risk in 27-54% and 16-98% of river km, respectively. Chlordane exceeded wildlife risk values for kingfisher in 11-96% of river km. PBDE concentrations were highest in large fish in the Missouri and Ohio Rivers (mean > 1000 ng g− 1 lipid), with congener 47 most prevalent. OC and PBDE concentrations were positively related to fish size, lipid content, trophic guild, and proximity to urban areas. Contamination of fishes by OCs is widespread among great rivers, although exposure risks appear to be more localized and limited in scope. As an indicator of ecological condition, fish tissue contamination contributes to the overall assessment of great river ecosystems in the U.S.  相似文献   

5.
Data on the concentrations of selected metals in the waters and sediments of an acid mine stream and its estuary are reported. The river water at the mouth is enriched in zinc, copper and manganese by at least two orders of magnitude above normal river water concentrations after having been significantly diluted by non-metalliferous tributaries. Iron is precipitated along the length of the stream while losses of copper and zinc from solution occur by adsorption onto hydrated ferric oxide above pH values of 4.5 and 6, respectively. Manganese concentrations are affected solely by dilution. The dissipation of the metalliferous river water in the marine regime is restricted, giving rise to estuarine waters containing high concentrations of copper and zinc both in solution and hydrogenous suspension. Deposition of hydrogenous material within the estuary is small, but approximately 50 % of the zinc and 90 % of the copper in the sediment is in a potentially mobile form. The environment is an unsuitable habitat for all but a few organisms.  相似文献   

6.
In the Lusatia region of northeastern Germany, dewatering for mining activities has resulted in an 8-km3 deficit in the groundwater balance. In order to refill aquifers and empty lignite pits, water will be abstracted for several decades from the River Spree which drains this region. This affects the ecological integrity of a 230 km river section including the floodplain in several aspects. Ecological consequences are shown for fishes, the aquatic invertebrate fauna, the retention of suspended matter, and oxygen concentrations. Therefore, an ecologically based minimum discharge has to be instituted. Current concepts on the assessment of minimum flow requirements in streams are reviewed. A multiple compartment method (MCM) for the assessment of flow requirements in extended river sections is suggested. Using the MCM, it can be shown that the minimum discharge that is required to preserve the river ecosystem is largely influenced by ambient channel morphology and nutrient concentration. This means that the ecological impacts of water abstraction could be abated by measures of morphological restoration of the river as well as of nutrient input restriction. Also, instream minimum flow requirements would be reduced, so that more river water could be abstracted, and the restoration of the water balance in the post-mining area in Lusatia accelerated.  相似文献   

7.
Products with antimicrobial effect based on silver nanoparticles are increasingly used in Asia, North America and Europe. This study presents an analysis of risk to freshwater ecosystems from silver released from these nanoparticles incorporated into textiles and plastics. The analysis is presented in four stages; (i) silver mass flow analysis and estimation of emissions, (ii) assessment of the fate of silver in a river system and estimation of predicted environmental concentrations (PECs), (iii) critical evaluation of available toxicity data for environmentally relevant forms of silver and estimation of predicted no-effect concentrations (PNECs), and (iv) risk characterization. Our assessment is based on estimated silver use in the year 2010, focusing on the Rhine river as a case study. In 2010, biocidal plastics and textiles are predicted to account for up to 15% of the total silver released into water in the European Union. The majority of silver released into wastewater is incorporated into sewage sludge and may be spread on agricultural fields. The amount of silver reaching natural waters depends on the fraction of wastewater that is effectively treated. Modeled PECs in the Rhine river are in satisfactory agreement with monitoring data from other river systems. Because a complete characterization of the toxicity of environmentally relevant silver species is lacking, only a limited risk assessment is possible at this time. However, our study indicates that PEC/PNEC ratios greater than 1 cannot be ruled out for freshwater ecosystems, in particular sediments. No risk is predicted for microbial communities in sewage treatment plants.  相似文献   

8.
The role of macroinvertebrates and diatoms as indicator for metal pollution was investigated by assessing both biota along a metal gradient in the Belgian river the Dommel. Macroinvertebrates and diatoms were sampled in summer and winter and physical-chemical characteristics of the water were measured at four different sample periods and related to sediment characteristics. Although metal concentrations, except cadmium, in the water nowhere exceeded water quality standards, high metal concentrations were measured in the sediment, indicating historical contamination of the Dommel. At the sites that were situated downstream of the pollution source, high levels of conductivity and chloride were measured in the water. Redundancy Analysis (RDA) indicated pH, phosphate and zinc as the significant environmental variables explaining each respectively 7.7%, 11.6% and 22.6% of the macroinvertebrate community composition. Two clusters could be separated, with Gammarus pulex, Leptocerus interruptus, Baetis rhodani and Cloeon dipterum associated with low zinc concentrations and Tubificidae, Asellus aquaticus, Erpobdella sp. and Chironomus thummi-plumosus associated with higher zinc concentrations. Ammonium (10.6%), conductivity (16.5%), chloride (11.4%) and zinc (5.9%) turned out to be significant variables explaining the diatom community structure. Based on physical-chemical differences and species composition, three different groups could be separated. With this Tabellaria flocculosa and Fragilaria capucina var. rumpens were associated with low metal concentrations, Gomphonema parvulum and Nitzschia palea with elevated concentrations and Eolimna minima and Sellaphora seminulum with high zinc concentrations. In conclusion, the diatom community best reflected the metal gradient. With regard to water quality indices, those based on macroinvertebrates best followed the metal pollution gradient and were most strongly correlated with physical-chemical variables of water and sediment. This study indicated that to assess the effect of metal pollution in lowland rivers, the combined use of macroinvertebrates and diatoms is more appropriate than the use of both biota separately.  相似文献   

9.
This paper comprises data from an extensive cross-disciplinary research project aiming to elucidate the environmental fate of corrosion-induced zinc release from external structures. It includes an exposure assessment that provide long-term runoff rates, concentrations and chemical speciation of zinc, from 14 zinc-based materials exposed during 5 years in Stockholm, Sweden, and an effect assessment including bioavailability and ecotoxicity measurements, both at the immediate release situation and after soil interaction. Runoff rates of total zinc ranged from 0.07 to 2.5 g Znm-2 yr-1 with zinc primarily released as the free ion for all materials investigated. The average effect concentration, causing a 50% growth reduction after 72 h to the green algae Raphidocelis subcapitata, was at the immediate release situation 69 microg ZnL-1. Upon interaction of runoff water with soil, which simulated 18 to 34 years of exposure, the total zinc concentration was significantly reduced, from milligram per litre to microgram per litre levels. Simultaneously, the most bioavailable fraction of zinc in runoff, the hydrated zinc(II)-ion, decreased from more than 95% to about 30%. The major fraction, 98-99%, of the introduced total zinc concentration in the runoff water was retained within the soil. As long as the soil retention capacity was not reached, this resulted in zinc concentrations in the percolate water transported through the soil layer, close to background values and below growth inhibition concentrations for the green algae investigated. Zinc retained in soil was to a large extent (85-99.9%) extractable with EDTA, and available for plant uptake after 5 to 7 months of ageing.  相似文献   

10.
开展了引江济太和引江济巢工程对太湖和巢湖饮用水源地富营养化关键指标TN和TP的影响研究。结果表明,太湖贡湖湾超过Ⅲ类地表水标准的指标为TN、BOD5和TP,引水期长江及入湖的TN和TP浓度基本高于贡湖湾;巢湖东半湖超过Ⅲ类地表水标准的指标为TP,长江水的TP和TN年均浓度均高于巢湖东半湖;在长江现状调水水质下,引长江水入太湖和巢湖不能有效降低两湖水源地TN和TP浓度。可见,外调水源虽增加了水量,却不能从根本上解决富营养化问题,必须坚持水量与水质并重,持之以恒地进行入湖及内源污染治理,从根本上实现湖体及水源地生态恢复。  相似文献   

11.
A nationwide survey of NDMA in raw and drinking water in Japan   总被引:2,自引:0,他引:2  
A nationwide survey of N-nitrosodimethylamine (NDMA) in both raw and finished water samples from drinking water treatment plants (DWTPs) in Japan was conducted. NDMA was analyzed by solid-phase extraction (SPE) followed by ultra performance liquid chromatography (UPLC) coupled with tandem mass spectrometry (MS/MS). NDMA was detected in 15 of 31 raw water samples collected in the summer at concentrations up to 2.6 ng/L, and in 9 of 28 raw water samples collected in winter at concentrations up to 4.3 ng/L. The NDMA concentrations were higher in raw water samples collected from treatment plants with catchment areas that have high population densities. The NDMA concentrations were higher in river water samples collected from the east and west of Japan than in those collected from other areas. NDMA was detected in 10 of 31 finished samples collected in summer at reduced concentrations of up to 2.2 ng/L, while 5 of 28 finished samples collected in winter showed NDMA concentrations up to 10 ng/L. The highest NDMA levels were detected in finished water samples collected from the Yodo River basin DWTP, which uses ozonation. Furthermore, evaluation of the process water produced at six advanced water treatment plants was conducted. Influent from the Yodo River indicated that the NDMA concentration increased during ozonation to as high as 20 ng/L, and then decreased with subsequent biological activated carbon treatment. To our knowledge, this is the first nationwide evaluation of NDMA concentrations in water conducted in Japan to date.  相似文献   

12.
Zinc enters surface waters from a variety of different emission sources. The geo-referenced model GREAT-ER (Geo-referenced Regional Exposure Assessment Tool for European Rivers) was applied to simulate spatially resolved zinc concentrations in the Ruhr river basin. The model links geo-referenced emissions (loads) to concentrations at local and regional scales and allows for evaluating the relative importance of emission sources. For each emission from point sources (household, industry, urban runoff) and non-point sources (agriculture, natural background), zinc loads were independently estimated using appropriate reference parameters (number of inhabitants, surface area drained, agricultural area, zinc ore regions). For point emissions from industry and mine drainage loads were taken directly from available data compilations. Simulated total zinc concentrations agree well with monitoring data. The strength of the modeling tool became evident from the unequivocal link that could be established between observed surface water concentrations and the large zinc input from geogenic sources and abandoned mines. These emission sources are regional characteristics of the Ruhr river basin and due to the fact that some regions are relatively rich in zinc ore, which was extracted over a long period of time. Although most of these emissions occur in the upper part of the catchment, they contribute to approximately one-third to the zinc load at the confluence with the Rhine River. Urban emissions from household, traffic (road) and buildings (roof) were shown to be responsible for approximately half of the concentration in the Ruhr at the confluence with the Rhine River.  相似文献   

13.
This study investigated the environmental impact and level of risk associated with mercury (Hg) contamination near a derelict chlor-alkali plant in Pavlodar, Northern Kazakhstan. Several species of fish were sampled from the highly polluted Lake Balkyldak and the nearby river Irtysh, to assess the extent of Hg bioaccumulation in the aquatic food chain and potential human health risks. A small number of bovine tissue samples, water samples, soil and plant samples from a nearby village were also investigated in order to make a preliminary assessment of potential impacts on the terrestrial food chain. Mercury levels in fish caught from Lake Balkyldak ranged from 0.16 to 2.2 mg kg(-1) and the majority of fish exceeded current human health criteria for Hg. Interspecies comparisons indicated that Hg is accumulated in the order dace>carp>tench. Site-specific bioaccumulation factors (BAF) were calculated for THg, and were estimated for MeHg. Fish from the river Irtysh and floodplain oxbow lakes contained between 0.075 and 0.159 mg kg(-1) of Hg and can be regarded as uncontaminated. Soils were found to be impacted by past atmospheric emissions of Hg. Cattle grazing in the surroundings of the factory are exposed to Hg from contaminated soils, plants and surface water, but the consumption of contaminated fish from the lake appears to be the main route of exposure for humans.  相似文献   

14.
Identifying the most suitable risk-reduction measures in drinking water systems requires a thorough analysis of possible alternatives. In addition to the effects on the risk level, also the economic aspects of the risk-reduction alternatives are commonly considered important. Drinking water supplies are complex systems and to avoid sub-optimisation of risk-reduction measures, the entire system from source to tap needs to be considered. There is a lack of methods for quantification of water supply risk reduction in an economic context for entire drinking water systems. The aim of this paper is to present a novel approach for risk assessment in combination with economic analysis to evaluate risk-reduction measures based on a source-to-tap approach. The approach combines a probabilistic and dynamic fault tree method with cost-effectiveness analysis (CEA). The developed approach comprises the following main parts: (1) quantification of risk reduction of alternatives using a probabilistic fault tree model of the entire system; (2) combination of the modelling results with CEA; and (3) evaluation of the alternatives with respect to the risk reduction, the probability of not reaching water safety targets and the cost-effectiveness. The fault tree method and CEA enable comparison of risk-reduction measures in the same quantitative unit and consider costs and uncertainties. The approach provides a structured and thorough analysis of risk-reduction measures that facilitates transparency and long-term planning of drinking water systems in order to avoid sub-optimisation of available resources for risk reduction.  相似文献   

15.
Surface water bodies are progressively subject to increasing stress as a result of environmentally degrading processes primarily related to anthropogenic activities. This study assesses and examines the impact of land use and land-based activities on the spatial variation in water quality of the Abou Ali River in North Lebanon. It is the first detailed study of its kind in Lebanon and adds to the existing knowledge by shedding light on a relatively small Mediterranean river in a developing country where there is a paucity of such studies. The assessment was conducted at the end of the dry season in 2002 and 2003 and the end of the wet season in 2003 and 2004. The study has demonstrated the importance of anthropogenic influences on the water quality of the Abou Ali River Basin, as concentrations of most contaminants were higher at locations with greatest human activity. The most adversely affected area was the section of the river that flows through an entirely urbanized and highly populated region, the Tripoli conurbation. Upstream rural sites were enriched by contaminants primarily from non-point sources such as agricultural runoff and poultry litter whereas contaminant concentrations at the urban sites were enriched by a combination of sewage discharge and flow of contaminants from upstream. If the Abou Ali River is to be utilized as a managed water resource and its water quality sustained, point source discharges will require treatment and land use management must be planned to minimize the impact of diffuse source pollution on the river. A high priority should be given to the implementation and enforcement of the precautionary and polluter pays principles. Moreover, an effective legal, economic and institutional framework is required to encourage investment in waste reduction and control and to introduce environmentally sound practices.  相似文献   

16.
The dissolved component of the apparent silver complexation capacity was determined for Susquehanna and Chenango River water samples collected over a 3-month period in the vicinity of Binghamton, New York. Silver ion activities detected by the Ag+/S2? ion selective electrode during potentiometric titration of the river water with AgNO3 were lower than Ag+ activities calculated with an inorganic equilibrium speciation model. The maximum difference in Ag+ activity, which ranged from 1.5 × 10?8 to 8.4 × 10?8, was attributed to the presence of a constituent or constituents in the river water which strongly bind Ag, perhaps dissolved organic matter and/or colloidal material. Variation in apparent complexation capacity between river water samples was explained by different concentrations of the ligands complexing Ag. A tentative extrapolation of the dissolved Ag speciation to Ag concentrations in natural river water suggested that most of the Ag would be complexed by Cl? and an unidentified constituent or constituents.  相似文献   

17.
Clean and healthy drinking water is important for life. Drinking water can be drawn from streams, lakes and rivers, directly collected (and stored) from rain, acquired by desalination of ocean water and melting of ice or it can be extracted from groundwater resources. Groundwater may reach the earth's surface in the form of springs or can be extracted via dug or drilled wells; it also contributes significantly to river baseflow. Different water quality issues have to be faced when utilising these different water resources. Some of these are at present largely neglected in water quality regulations. This paper focuses on the inorganic chemical quality of natural groundwater. Possible health effects, the problems of setting meaningful action levels or maximum admissible concentrations (MAC-values) for drinking water, and potential shortcomings in current legislation are discussed. An approach to setting action levels based on transparency, toxicological risk assessment, completeness, and identifiable responsibility is suggested.  相似文献   

18.
River polders are retention basins contained by levees alongside rivers into which water from the main river channel is diverted during extreme floods in order to cap the peak discharge of the flood hydrograph and to alleviate downstream flood risk by reducing the water levels. The retained water, however, is stagnant and the organic material in the water and the bottom sediments imposes a strong oxygen demand on the water. This paper presents a quasi two-dimensional computer-based methodology to assess the environmental risk exhibited by the operation of polders with which the concentration of dissolved oxygen in river and polder water can be simulated. A Monte-Carlo analysis allows the probability distribution of all the outcomes of the minimum dissolved oxygen levels in the water to be derived. From this analysis, the environmental risk of the dissolved oxygen concentrations in the polder water falling below 2 mg O2/L (the level considered critical for aquatic ecosystems) can be determined.The August 2002 extreme flood event on the Elbe River, Germany, with a proposed polder system variant was used to calibrate the model. A daily time step was used to for the simulations for a time frame 12-21 August 2008. The results show plausible spatial and temporal variations in the dissolved oxygen concentrations within the polders. The quasi-2D approach was successful in simulating the spatial distribution of water quality constituents in the polder system. There is up to approximately 20% risk that dissolved oxygen levels fall below 2 mg/L in the polders. This risk can potentially increase if sediment oxygen demand increases due to crop residue and water temperatures in polders increase. High nutrient transport in the river during flooding can cause a spurt of phytoplankton growth in the polders.  相似文献   

19.
To study the deterioration of the water quality in Lake Biwa, Japan, over the last 40 years, we measured the concentrations and isotopic ratios of sulfur and strontium of water in 41 inflowing rivers and one discharging river. The concentrations of SO4 and Sr of inflowing rivers at downstream sites were generally high in the southern urban area and in the eastern area, where a large agricultural plain is situated, but low in the northern and western areas, whose watersheds are mountainous and with low population density. SO4 and Sr concentrations are also lower at upstream sites, which are closer to mountainous areas. Thus, the inflowing river receives large amounts of SO4 and Sr as it flows across the plain, where human activity levels are high. The delta34S or 87Sr/86Sr values of most eastern rivers at downstream sites are lower than those of water in Lake Biwa, and values become more uniform as the proportion of the plain area in the watershed increases. River water in other areas has higher values of delta34S or 87Sr/86Sr than the lake water. This result indicates that the decadal decrease of delta34S and 87Sr/86Sr in the lake water has been caused mainly by the increased flux of SO4 and Sr from rivers in the eastern plain. We assume that in the plain, sulfur, nitrogen, and organic compounds induced by human activities generate sulfuric, nitric, and organic acids in the water, which accelerate the extraction of Sr from bedrocks, leading to the generation of Sr in the river water in the area.  相似文献   

20.
Carambola (Averrhoa carambola L.) is a popular juicy fruit throughout the tropical and subtropical world. This study was designed to quantify the levels of zinc (Zn), nickel (Ni) and cadmium (Cd) in carambolas marketed in southern China, and further to evaluate the potential health risk of human consumption of carambola. Zinc concentrations, ranging from 1.471 to 2.875 mg/kg (on fresh weight basis), were below the maximum permissible concentration for Zn in fruit of China (5 mg/kg). However, Ni concentrations (0.134-0.676 mg/kg) were considerably higher than the related recommendation values. Furthermore, Cd concentrations in 51% of the carambolas purchased from Guangzhou exceeded the maximum permissible concentration for Cd in fruit of China (0.03 mg/kg). Our results implicated that the consumption of 0.385 kg carambola contaminated by Cd per day would cause the tolerable daily intake (TDI) of Cd by the consumer to be exceeded. In addition, the remarkably high Ni concentrations in carambolas should also be of concern. The status of heavy metal contamination of carambola products marketed in the other regions and their implications for human health should be identified urgently by in-depth studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号