首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have fabricated Ino.53Ga0.47As/AlAs/InP resonant tunneling diodes (RTDs) based on the air-bridge technology by using electron beam lithography processing. The epitaxial layers of the RTD were grown on semiinsulating (100) InP substrates by molecular beam epitaxy. RTDs with a peak current density of 24.6 kA/cm2 and a peak-to-valley current ratio of 8.6 at room temperature have been demonstrated.  相似文献   

2.
InP基共振遂穿二极管器件(RTD)研究   总被引:1,自引:1,他引:0  
我们在实验中对InGaAs/AlAs/InP共振遂穿二极管(RTD)材料结构进行了优化设计,并用MBE设备在(100)半绝缘InP单晶片上生长了RTD外延材料。我们采用电子束光刻工艺和空气桥互连技术,制作了InP基RTD器件。并在室温下测试了器件的电学特性:峰值电流密度24.6kA/cm2,峰谷电流比(PVCR)为8.6。  相似文献   

3.
Room-temperature current densities of 1.3×105 A/cm2 and peak-to-valley ratios of 2.5 have been achieved for resonant tunneling diodes (RTDs) in the GaAs/AlAs material system. The devices were fabricated in a microwave-compatible process using topside contacts and a semi-insulating substrate to allow device integration. Proton implantation creates a nonconducting surface compatible with high-frequency coplanar transmission lines and other passive microwave structures  相似文献   

4.
Microwave integrated-circuit-compatible InAs/AlSb resonant tunneling diodes (RTDs) have been fabricated. The resulting devices have peak current densities of 3.3×105 A/cm2 with peak-to-valley ratios of 3.3. Switching transition times of 1.7 ps are measured using electrooptic sampling techniques  相似文献   

5.
The authors have grown In0.22Ga0.78As/AlAs resonant tunnelling diodes (RTDs) on relaxed InxGa1-x As buffers on GaAs substrates, which show the largest peak-to-valley current ratio (PVCR), 13:1, ever reported for GaAs-based RTDs. X-ray diffraction and photoluminescence (PL) studies confirm the composition and relaxation of the buffers. The intrinsic device performance is excellent despite the presence of some dislocations in the active layers. However, it appears that the relaxed buffers do add series resistance to the intrinsic device  相似文献   

6.
Nine-state resonant tunneling diode memory   总被引:1,自引:0,他引:1  
The authors demonstrate an epitaxial series combination of eight pseudomorphic AlAs/In0.53Ga0.47As/InAs resonant tunneling diodes (RTDs) grown by molecular beam epitaxy on InP. This series RTD produces an eight-peak multiple negative differential resistance characteristic with a peak-to-valley current ratio (PVR) exceeding 2 per peak at a peak current density of approximately 6 kA/cm 2. Hysteresis in the current-voltage characteristic is reduced by uniformly Si doping the double-barrier resonant tunneling region at a density of 5×1016 cm-3. Using this multiple-peak RTD in series with a field-effect transistor load, a nine-state multivalued memory circuit is demonstrated  相似文献   

7.
Al0.3Ga0.7As (10 nm)/GaAs (5 nm)/Al0.3Ga0.7As (10 nm) double barrier resonant tunneling diodes (RTDs) have been fabricated on a (411)A GaAs substrate by molecular beam epitaxy (MBE), which has atomically flat GaAs/Al0.3Ga0.7As interfaces over a device area. The (411)A RTDs showed a larger peak to valley current ratio by about 40% at 77K comparing to RTDs grown on a conventional (100) GaAs substrate simultaneously. Reduction of the valley current (0.61 times smaller) is the main cause for this larger peak to valley current ratio, which is probably due to improved interface roughness and defects of the (411)A RTDs.  相似文献   

8.
The DC current-voltage characteristics of strained In0.25 Ga0.75As/AlAs resonant tunneling diode (RTD) structures grown on GaAs (100) substrates which also include prepatterned mesas are discussed. The observed peak-to-valley current ratios (PVRs) of 4.5 at 300 K and 15 to 77 K with corresponding peak current densities of 11 and 13 kA/cm2 are the highest values of PVR to date for this strained system and are the same for the nonpatterned and prepatterned regions  相似文献   

9.
在半绝缘的InP衬底上采用分子束外延的方法生长制备了不同势垒厚度的RTD材料样品,室温下测量的最高峰-谷电流比为18.39.通过模拟得到RTD直流特性与势垒厚度、势阱材料及厚度、隔离层厚度以及掺杂浓度间的关系,对结果进行了分析与讨论.  相似文献   

10.
We have studied the growth of (lll)B-oriented AlAs/GaAs/AIAs double barrier resonant tunneling structures in a gas source molecular beam epitaxy system. We investigate the current peak-to-valley ratios of the resonant tunneling structures grown on (lll)B GaAs substrates under the various growth conditions, such as III/V flux ratios, substrate temperature, growth interruption at the heterointerfaces, buffer or contact layers, etc. We demonstrate that, in contrast to previous reports, high quality heterostructures can be grown in a gas source system if certainIII/V flux ratio, substrate temperature, and misoriented substrate are used. We show that the As/Ga flux ratio plays the key role for the growth on the misoriented ( 111 )B GaAs substrate, and growth at extremely high temperatures is not beneficial to the negative differential resistance. We also show that, although inserting a growth interruption in the buffer layer is believed to be helpful to the surface morphology, it is detrimental to the current peak-to-valley ratio.  相似文献   

11.
The combination of resonant tunneling diodes (RTDs) and complementary metal-oxide-semiconductor (CMOS) silicon circuitry can offer substantial improvement in speed, power dissipation, and circuit complexity over CMOS-only circuits. We demonstrate the first integrated resonant tunneling CMOS circuit, a clocked 1-bit comparator with a device count of six, compared with 21 in a comparable all-CMOS design. A hybrid integration process is developed for InP-based RTDs which are transferred and bonded to CMOS chips. The prototype comparator shows sensitivity in excess of 106 VIA, and achieves error-free performance in functionality testing. An optimized integration process, under development, can yield high-speed, low power circuits by lowering the high parasitic capacitance associated with the prototype circuit  相似文献   

12.
This is the first report of a Si/SiGe resonant interband tunneling diodes (RITDs) on silicon substrates grown by the chemical vapor deposition process. The nominal RITD structure forms two quantum wells created by sharp $delta$-doping planes which provide for a resonant tunneling condition through the intrinsic spacer. The vapor phase doping technique was used to achieve abrupt degenerate doping profiles at higher substrate temperatures than previous reports using low-temperature molecular beam epitaxy, and postgrowth annealing experiments are suggestive that fewer point defects are incorporated, as a result. The as-grown RITD samples without postgrowth thermal annealing show negative differential resistance with a recorded peak-to-valley current ratio up to 1.85 with a corresponding peak current density of 0.1 $hbox{kA/cm}^{2}$ at room temperature.   相似文献   

13.
利用分子束外延技术研制出InP基IhAs/In0.53Ga0.47As/AlAs共振隧穿二极管,其中势垒为10个单分子AlAs,势阱由8个单分子层In0.53Ga0.47As阱和4个单分子层InAs子阱组成.室温下峰值电流密度接近3kA/cm2,峰和谷的电流密度比率达到19.  相似文献   

14.
We report on AlAs/GaxJn1−xAs (x = 0.47) quantum well heterostructures grown by metalorganic chemical vapor deposition (MOCVD) on InP substrates. Heterostructure quality was evaluated by high resolution x-ray diffraction for various growth conditions. Double barrier quantum well heterostructures were grown and processed into resonant tunneling diodes (RTDs). Room temperature electrical measurements of the RTDs yielded maximum peak to valley current ratios of 7.7 with peak current density of 96 kA/cm2 and 11.3 with peak current density of 12 kA/cm2, for devices grown by atmospheric and low pressure MOCVD, respectively.  相似文献   

15.
The current–voltage characteristics of GaAs/InxGa1−xAs/AlAs resonant tunneling diodes (RTDs) are a function of stress, and the current–voltage changes of RTDs with stress are attributed to the piezoresistive effect in RTDs. In order to study the piezoresistive effect in RTDs for application in micromachined mechanical sensors, the beam-mass structure based on RTDs is designed, fabricated and tested by the Wheatstone bridge test circuit. The test results show that the piezoresistive sensitivity of RTDs can be adjusted through the bias voltage, and the maximal piezoresistive sensitivity of RTDs with bias voltage at 0.618 V is 7.61×10−11 Pa−1, which is two orders higher than the minimal piezoresistive sensitivity (2.03×10−13 Pa−1) of RTDs with bias voltage at 0.656 V, and is also higher than the piezoresistive sensitivity of silicon material (5.52×10−11 Pa−1).  相似文献   

16.
在InP衬底上采用感应耦合等离子体刻蚀技术制备了高性能的AlAs/In0.53Ga0.47As/InAs共振隧穿二极管.正向偏压下PVCR=7.57,Jp=39.08kA/cm2;反向偏压下PVCR=7.93,Jp=34.56kA/cm2.在未去除测试电极和引线等寄生参数影响下,面积为5μm×5μm的RTD的阻性截止频率为18.75GHz.最后对非对称的I-V特性进行了分析讨论.  相似文献   

17.
在InP衬底上采用感应耦合等离子体刻蚀技术制备了高性能的AlAs/In0.53Ga0.47As/InAs共振隧穿二极管.正向偏压下PVCR=7.57,Jp=39.08kA/cm2;反向偏压下PVCR=7.93,Jp=34.56kA/cm2.在未去除测试电极和引线等寄生参数影响下,面积为5μm×5μm的RTD的阻性截止频率为18.75GHz.最后对非对称的I-V特性进行了分析讨论.  相似文献   

18.
A microwave-compatible process for fabricating planar integrated resonant tunneling diodes (RTDs) is described. High-performance RTDs have been fabricated using AlxGa1-xAs/Iny Ga1-yAs/GaAs strained layers. Peak-to-valley current ratios (PVRs) of 4.8:1 with simultaneous peak current densities of 4×104 A/cm2 have been achieved at room temperature for diodes of area 9 μm2. Accurate measurements of reflection gain versus frequency between 1.5 and 26.5 GHz in the negative differential region indicate that the present technology is promising for millimeter-wave integrated circuits including self-oscillating mixers, frequency multipliers, and detectors  相似文献   

19.
InP-based resonant tunneling hot electron transistors (RHET's) were studied systematically using chemical beam epitaxy (CBE) for the first time. All the RHET's studied have a highly strained AlAs/In0.75Ga0.25As/AlAs resonant tunneling double barrier as a hot electron injector, and an InP collector barrier with or without InGaAsP graded layers. The highest transport ratio (α) observed is 0.98, and the highest peak-to-valley current ratios (PVR's) measured are 20 and 200 in the collector current and base current, respectively, at 80 K. A self-consistent simulation is used as a reference to optimize the hot electron injector and to explain the ballistic transport. An energy spectrometer technique was applied to the RHET's for resolving the hot electron energy distribution which showed a full width at half maximum (FWHM) of around 58 meV, indicating ballistic transport of electrons. Finally, room temperature transistor action was also observed with a β of 4 and a cutoff frequency of 31 GHz  相似文献   

20.
The authors report the first co-integration of resonant tunneling and heterojunction bipolar transistors. Both transistors are produced from a single epitaxial growth by metalorganic molecular beam epitaxy, on InP substrates. The fabrication process yields 9-μm2-emitter resonant tunneling bipolar transistors (RTBTs) operating at room temperature with peak-to-valley current ratios (PVRs) in the common-emitter transistor configuration, exceeding 70, at a resonant peak current density of 10 kA/cm2, and a differential current gain at resonance of 19. The breakdown voltage of the In0.53Ga0.47As-InP base/collector junction, VCBO, is 4.2 V, which is sufficient for logic function demonstrations. Co-integrated 9-μm2-emitter double heterojunction bipolar transistors (DHBTs) with low collector/emitter offset voltage, 200 mV, and DC current gain as high as 32 are also obtained. On-wafer S-parameter measurements of the current gain cutoff frequency (fT) and the maximum frequency of oscillation (fmax) yielded f T and fmax values of 11 and 21 GHz for the RTBT and 59 and 43 GHz for the HBT, respectively  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号