首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The trisaccharide Gal alpha 1-->3Gal beta 1-->4GlcNAc beta 1-->O-(CH2)8COOCH3 was enzymatically synthesized, with in situ UDP-Gal regeneration. By combination in one pot of only four enzymes, namely, sucrose synthase, UDP-Glc 4'-epimerase, UDP-Gal:GlcNAc beta 4-galactosyltransferase and UDP-Gal:Gal beta 1-->4GlcNAc alpha 3-galactosyltransferase, Gal alpha 1-->3Gal beta 1-->4GlcNAc beta 1-->O-(CH2)8COOCH3 was formed in a 2.2 mumol ml-1 yield starting from the acceptor GlcNAc beta 1-->O-(CH2)8COOCH3. This is an efficient and convenient method for the synthesis of the Gal alpha 1-->3Gal beta 1-->4GlcNAc epitope which pays an important role in various biological and immunological processes.  相似文献   

2.
E-selectin binding gangliosides were isolated from myelogenous leukemia HL60 cells, and the E-selectin binding pattern was compared with that of human neutrophils as described in the preceding paper in this issue. The binding fractions were identified as monosialogangliosides having a series of unbranched polylactosamine cores. Structures of fractions 12-3, 13-1, 13-2, and 14, which showed clear binding to E-selectin under the conditions described in the preceding paper, were characterized by functional group analysis by application of monoclonal antibodies, 1H-NMR, FAB-MS, and electrospray mass spectrometry with collision-induced dissociation of permethylated fractions. Fractions 12-3, 13-1, and 13-2 were characterized by the presence of a major ganglioside with the following structure: NeuAc alpha 2-->3Gal beta 1-->4 GlcNAc beta 1-->3Gal beta 1-->4(Fuc alpha 1-->3) GlcNAc beta 1-->3Gal beta 1-->4(Fuc alpha 1-->3)-GlcNAc beta 1-->3Gal beta 1-->4GlcNAc beta 1-->3 Gal beta 1-->4 Glc beta Cer. Fractions 12-3 and 13-2 contained, in addition, small quantities (10-15%) of extended SLex with internally fucosylated structures: NeuAc alpha 2-->3 Gal beta 1-->4-(Fuc alpha 1-->3) GlcNAc beta 1-->3 Gal beta 1-->4(Fuc alpha 1-->3) GlcNAc beta 1-->3 Gal beta 1-->4 (+/- Fuc alpha 1-->3)GlcNA c beta 1-->3 Gal beta beta 1-->4GlcNAc beta 1-->3 Gal beta 1-->Glc Beta Cer. Fraction 13-1, showing stronger E-selectin binding activity than 12-3 and 13-2, contained only a trace quantity (< 1%) of SLex. Fraction 14, which also showed clear binding to E-selectin, was characterized by the presence of the following structures, in addition to two internally monofucosylated structures (XX and XXI, Table 2, text): NeuAc alpha 2-->3Gal beta 1-->4GlcNAc beta 1-->3Gal beta 1-->4(Fuc alpha 1-->3)GlcNAc beta 1-->3 Gal beta 1-->4(Fuc alpha 1-->3)GlcNAc beta 1-->3Gal beta 1-->4 GlcNAc beta 1-->3 Gal beta 1-->4 GlcNAc beta 1-->3 Gal beta 1-->4 Glc beta Cer; andNeuAc alpha 2-->3Gal beta 1-->4GlcNAc beta 1-->3 Gal beta 1-->4(Fuc alpha 1-->3)GlcNAc beta 1-->3Gal beta 1-->4GlcNAc beta 1-->3Gal beta 1-->4 (Fuc alpha 1--3)-GlcNAc beta 1-->3Gal beta 1-->4GlcNAc beta 1-->3Gal beta 1--4Glc beta Cer. SLex determinant was completely absent. Thus, the E-selectin binding epitope in HL60 cells is carried by unbranched terminally alpha 2-->3 sialylated polylactosamine having at least 10 monosaccharide units (4 N-acetyllactosamine units) with internal multiple fucosylation at GlcNAc. These structures are hereby collectively called "myeloglycan". Monosialogangliosides from normal human neutrophils showed an essentially identical pattern of gangliosides with selectin binding property. Myeloglycan, rather than SLex, provides a major physiological epitope in E-selectin-dependent binding of leukocytes and HL60 cells.  相似文献   

3.
Three IgM class anti-H monoclonal antibodies (1E3, 1E5 and 3H1) were obtained from a BALB/c mouse immunized with human O type saliva. These antibodies were found to agglutinate red cells from O group and A and B subgroups but not from Bombay and para-Bombay individuals whose H antigen was barely detected by anti-H reagents. The agglutination reactions of these antibodies were inhibited by H antigens from human tissues. It was also demonstrated that both 1E3 and 3H1 reacted with H disaccharide (Fuc alpha 1-->2Gal beta), H type 1 (Fuc alpha 1-->2Gal beta 1-->3GlcNAc beta), H type 2 (Fuc alpha 1-->2Gal beta 1-->4GlcNAc beta), H type 3 (Fuc alpha 1-->2Gal beta 1-->3GalNAc alpha) and H type 4 (Fuc alpha 1-->2Gal beta 1-->3GalNAc beta) but not with Lea (Gal beta 1-->3[Fuc alpha 1-->4]GlcNAc beta), Leb (Fuc alpha 1-->2Gal beta 1-->3[Fuc alpha 1-->4]GlcNAc beta), X (Gal beta 1-->4[Fuc alpha-->3]GlcNAc beta) or Y (Fuc alpha 1-->2Gal beta 1-->4[Fuc alpha 1-->3]GlcNAc beta). On the other hand, 1E5 was found to react with H type 1, H type 2, Leb and Y. Because of the unique reactivities against various fucosyl linkages these monoclonal antibodies could be useful not only as anti-H reagents but also as reagents for the structural analysis of fucosylated glycoconjugates.  相似文献   

4.
A derivative of allyl 3"-O-(2-acetamido-2-deoxy-beta-D-glucopyranosyl)-beta-lactoside with a free OH group at C-4GlcNAc was glycosylated with trichloroacetimidate of selectively protected GlcA(beta 1-->3)Gal alpha disaccharide in dichloromethane in the presence of trimethylsilyl triflate resulting in a pentasaccharide product with an 82% yield. This product was converted to monohydroxy derivative with a free OH group at C-3GlcA via the formation and the subsequent opening of the 6,3-lactone ring in the glucuronic acid residue. The 3"'-O-sulfation of the monohydroxy derivative, the removal of the protective groups, and the reduction of the allyl aglycon yielded the pentasaccharide propyl glycoside NaSO3-3GlcA(beta 1-->3)Gal(beta 1-->4)GlcNAc(beta 1-->3)Gal(beta 1-->4)Glc beta-Opr comprising the oligosaccharide chain of the SGGL-1 glycolipid, which is recognized by HNK-1 antibodies. NaSO3-3GlcA(beta 1--> 3)Gal beta OAll, GlcA(beta 1-->3)Gal(beta 1-->4)GlcNAc(beta 1-->3)Gal(beta 1-->4)Glc beta-OPr and GlcA(beta 1-->3)Gal beta OAll were synthesized in a similar way.  相似文献   

5.
The assembly of complex structures bearing the H determinant was examined by characterizing the specificities of a cloned blood group H gene-specified alpha 1,2-L-fucosyltransferase (FT) toward a variety of sulfated, sialylated, or fucosylated Gal beta 1,3/4GlcNAc beta- or Gal beta 1,3GalNAc alpha-based acceptor structures. (a) As compared to the basic type 2, Gal beta 1,4GlcNAc beta-(K(m) = 1.67 mM), the basic type 1 was 137% active (K(m) = 0.83 mM). (b) On C-6 sulfation of Gal, type 1 became 142.1% active and type 2 became 223.0% active (K(m) = 0.45 mM). (c) On C-6 sulfation of GlcNAc, type 2 showed 33.7% activity. (d) On C-3 or C-4 fucosylation of GlcNAc, both types 1 and 2 lost activity. (e) Type 1 showed 70.8% and 5.8% activity, respectively, on C-6 and C-4 O-methylation of GlcNAc. (f) Type 1 retained 18.8% activity on alpha 2,6-sialylation of GlcNAc. (g) Terminal type 1 or 2 of extended chain had lower activity. (h) With Gal in place of GlcNAc in type 1, the activity became 43.2%. (i) Compounds with terminal alpha 1,3-linked Gal were inactive. (j) Gal beta 1,3GalNAc alpha- (the T-hapten) was approximately 0.4-fold as active as Gal beta 1,4GlcNAc beta-. (k) C-6 sulfation of Gal on the T-hapten did not affect the acceptor activity. (l) C-6 sulfation of GalNAc decreased the activity to 70%, whereas on C-6 sulfation of both Gal and GalNAc the T-hapten lost the acceptor ability. (m) C-6 sialylation of GalNAc also led to inactivity. (n) beta 1,6 branching from GalNAc of the T-hapten by a GlcNAc residue or by units such as Gal beta 1, 4GlcNAc-, Gal beta 1,4(Fuc alpha 1,3)GlcNAc-, or 3-sulfoGal beta 1,4GlcNAc- resulted in 111.9%, 282.8%, 48.3%, and 75.3% activities, respectively. (o) The enhancement of enzyme affinity by a sulfo group on C-6 of Gal was demonstrated by an increase (approximately 5-fold) in the K(m) for Gal beta 1,4GlcNAc beta 1,6(Gal beta 1,3)GalNAc alpha-O-Bn in presence of 6-sulfoGal beta 1,- 4GlcNAc beta-O-Me (3.0 mM). (p) Among the two sites in Gal beta 1, 4GlcNAc beta 1,6(Gal beta 1,3) GalNAc alpha-O-Bn, the enzyme had a higher affinity ( > 3-fold) for the Gal linked to GlcNAc. (q) With respect to Gal beta 1,- 3GlcNAc beta-O-Bn (3.0 mM), fetuin triantennary asialo glycopeptide (2.4 mM), bovine IgG diantennary glycopeptide (2.8 mM), asialo Cowper's gland mucin (0.06 mM), and the acrylamide copolymers (0.125 mM each) containing Gal beta 1,3GlcNAc beta-, Gal beta 1,3(6-sulfo)GlcNAc beta-, Gal beta 1,3GalNAc alpha-, Gal beta 1,3Gal beta-, or Gal alpha 1,3Gal beta- units were 153.6%, 43.0%, 6.2%, 52.5%, 94.9%, 14.7%, 23.6%, and 15.6% active, respectively. (r) Fucosylation by alpha 1,2-L-FT of the galactosyl residue which occurs on the antennary structure of the bovine IgG glycopeptide was adversely affected by the presence of an alpha 1,6-L-fucosyl residue located on the distant glucosaminyl residue that is directly attached to the asparagine of the protein backbone. This became evident from the 4-fold activity of alpha 1,2-L-FT toward bovine IgG glycopeptide after approximately 5% removal of alpha 1,6-linked Fuo.  相似文献   

6.
By using two different reaction pathways, we generated enzymatically three sialylated and site-specifically alpha 1-3-fucosylated polylactosamines. Two of these are isomeric hexasaccharides Neu5Ac(alpha 2-3)Gal(beta 1-4)GlcNAc(beta 1-3)Gal(beta 1-4)[Fuc(alpha 1-3)] GlcNAc and Neu5Ac(alpha 2-3)Gal(beta 1-4)[Fuc(alpha 1-3)]GlcNAc(beta 1-3)Gal(beta 1-4) GlcNAc, containing epitopes that correspond to VIM-2 and sialyl Lewis (x), respectively. The third one, nonasaccharide Neu5Ac(alpha 2-3)Gal(beta 1-4)GlcNAc(beta 1-3)Gal(beta 1-4)[Fuc(alpha 1-3)] GlcNAc(beta 1-3)Gal(beta 1-4)[Fuc(alpha 1-3)]GlcNAc, is a sialylated and internally difucosylated derivative of a trimeric N-acetyllactosamine. All three oligosaccharides have one fucose-free N-acetyllactosaminyl unit and can be used as acceptors for recombinant alpha 1-3-fucosyltransferases in determining the biosynthesis pathways leading to polyfucosylated selectin ligands.  相似文献   

7.
The structures of the N-linked sugar chains in the PAS-6 glycoprotein (PAS-6) from the bovine milk fat globule membrane were determined. The sugar chains were liberated from PAS-6 by hydrazinolysis, and the pyridylaminated sugar chains were separated into a neutral (6N) and two acidic chains (6M and 6D), the acidic sugar chains then being converted to neutral sugar chains (6MN and 6DN). 6N was separated into two neutral fractions (6N13 and 6N5.5), while 6MN and 6DN each gave a single fraction (6MN13 and 6DN13). The structure of 6N5.5, which was the major sugar chain in PAS-6, is proposed to be Man alpha1 --> 6 (Man alpha1 --> 3) Man beta1 --> 4GlcNAc beta1 --> 4GlcNAc-PA; 6N13, 6MN13 and 6DN13 are proposed to be Gal beta1 --> 3Gal beta1 --> 4GlcNAc beta1 --> 2Man alpha1 --> 6 (Gal beta1 --> 3Gal beta1 --> 4GlcNAc beta1 --> 2Man alpha1 --> 3) Man beta1 --> 4GlcNAc beta1 --> 4 (Fuc alpha1 --> 6)GlcNAc-PA; 6M and 6D had 1 or 2 additional NeuAc residues at the non-reducing ends of 6MN13 and 6DN13, respectively.  相似文献   

8.
Multiply branched polylactosaminoglycans are expressed in glycoproteins and glycolipids of many cells. Interest in their biology stems from their abundant expression in early embryonal cells and from their ability to carry multiple lectin-binding determinants, which makes them prominent ligands and antagonists of cell adhesion proteins. A prototype of their backbones is represented by the decasaccharide LacNAc beta1-3'(LacNAc beta1-6')LacNAc beta1-3'(LacNAc beta1-6')LacNAc (5), where LacNAc is the disaccharide Gal beta1-4GlcNAc. Here, we describe in vitro biosynthesis of glycan 5. Incubation of the linear hexasaccharide LacNAc beta1-3'LacNAc beta1-3'LacNAc (1) with UDP-GlcNAc and alpha midchain beta1,6-GlcNAc transferase activity (GlcNAc to Gal), present in rat serum [Gu, J., Nishikawa, A., Fujii, S., Gasa, S., & Taniguchi, N. (1992) J. Biol. Chem. 267, 2994-2999], gave the doubly branched octasaccharide LacNAc beta1-3'(GlcNAc beta1-6')LacNAc beta1-3'(GlcNAc beta1-6')LacNAc (4). The latter was converted to 5 by enzymatic beta1,4-galactosylation. In the initial branching reaction of 1, two isomeric heptasaccharide intermediates, LacNAc beta1-3'LacNAc beta1-3'(GlcNAc beta1-6')LacNAc (2) and LacNAc beta1-3'(GlcNAc beta1-6')LacNAc beta1-3'LacNAc (3), were formed first at comparable rates. Later, both intermediates were converted to 4, revealing two distinct pathways of the reaction: 1 --> 2 --> 4 and 1 --> 3 --> 4. These data suggest that, regardless of their chain length, linear polylactosamines similar to 1 contain potential branching sites at each of the internal galactoses. The enzyme-binding epitope of 1 is probably LacNAc beta1-3'LacNAc, because the trisaccharides GlcNAc beta1-3'LacNAc and LacNAc beta1-3Gal as well as the tetrasaccharide GlcNAc beta1-3'LacNAc beta1-3Gal were poor acceptors, while LacNAc beta1-3'LacNAc was a good one. Midchain beta1,6-GlcNAc transferase activities present in serum of several mammalian species, including man, resembled closely the rat serum activity in their mode of action and in their acceptor specificity. We suggest that analogous membrane-bound Golgi enzymes are involved in the biosynthesis of multiply branched polylactosamines in vivo.  相似文献   

9.
Using recombinant UDP-Gal:Gal beta 1-->4GlcNAc alpha 1,3-galactosyltransferase and human milk alpha 1,3-fucosyltransferase the disaccharide Gal beta 1-->4GlcNAc has been converted in vitro into a tetrasaccharide product. The product has been characterized by gel filtration chromatography and HPLC and was analyzed using 1H-NMR. Based on NMR spectral data along with the known linkage specificity of the alpha 1,3-galactosyltransferase and the alpha 1,3-fucosyltransferase used, the chromatographic behaviour of the product, and the 1:1 molar ratios of the galactose and fucose residues calculated from incorporated radioactivity, it is concluded that the structure of the tetrasaccharide product is Gal alpha 1-->3Gal beta 1--4[Fuc alpha 1-->3]-GlcNAc. The tetrasaccharide is a non-charged analogue of the sialyl-Lex determinant that potentially may act as a ligand structure in selectin-mediated cell-cell adhesion.  相似文献   

10.
Galactosyltransferase, sialyltransferase, and fucosyltransferase were used to create a panel of complex oligosaccharides that possess multiple terminal sialyl-Le(x) (NeuAc alpha 2-3Gal[Fuc alpha 1-3] beta 1-4GlcNAc) and GalNAc-Le(x) (GalNAc[Fuc alpha 1-3]beta 1-4GlcNAc). The enzymatic synthesis of tyrosinamide biantennary, triantennary, and tetraantennary N-linked oligosaccharides bearing multiple terminal sialyl-Le(x) was accomplished on the 0.5 mumol scale and the purified products were characterized by electrospray MS and 1H NMR. Likewise, biantennary and triantennary tyrosinamide oligosaccharides bearing multiple terminal GalNAc-Le(x) determinants were synthesized and similarly characterized. The transfer kinetics of human milk alpha 3/4-fucosyltransferase were compared for biantennary oligosaccharide acceptor substrates possessing Gal beta 1-4GlcNAc, GalNAc beta 1-4GlcNAc, and NeuAc alpha 2-3Gal beta 1-4GlcNAc which established NeuAc alpha 2-3Gal beta 1-4GlcNAc as the most efficient acceptor substrate. The resulting complex oligosaccharides were chemically tethered through the tyrosinamide aglycone to the surface of liposomes containing phosphatidylthioethanol, resulting in the generation of glycoliposomes probe which will be useful to study relationships between binding affinity and the micro- and macro-clustering of selectin ligand.  相似文献   

11.
Enzymatic 3-O-sulfation of terminal beta-Gal residues was investigated by screening sulfotransferase activity present in 37 human tissue specimens toward the following synthesized acceptor moieties: Galbeta1,3GalNAc alpha-O-Al, Galbeta1,4GlcNAcbeta-O-Al, Galbeta1,3GlcNAcbeta-O-Al, and mucin-type Galbeta1,4GlcNAcbeta1,6(Galbeta1,3)GalNAc alpha-O-Bn structures containing a C-3 methyl substituent on either Gal. Two distinct types of Gal: 3-O-sulfotransferases were revealed. One (Group A) was specific for the Galbeta1, 3GalNAc alpha- linkage and the other (Group B) was directed toward the Galbeta1,4GlcNAc branch beta1,6 linked to the blood group T hapten. Enzyme activities found in breast tissues were unique in showing a strict specificity for the T-hapten. Galbeta-O-allyl or benzyl did not serve as acceptors for Group A but were very active with Group B. An examination of activity present in six human sera revealed a specificity of the serum enzyme toward beta1,3 linked Gal, particularly, the T-hapten without beta1,6 branching. Group A was highly active toward T-hapten/acrylamide copolymer, anti-freeze glycoprotein, and fetuin O-glycosidic asialo glycopeptide; less active toward fetuin triantennary asialo glycopeptide; and least active toward bovine IgG diantennary glycopeptide. Group B was moderately and highly active, respectively, with the latter two glycopeptides noted and least active with the first two. Competition experiments performed with Galbeta1,3GalNAc alpha-O-Al and Galbeta1,4GlcNAcbeta1,6(Galbeta1,3)GalNAc alpha-O-Bn having a C-3 substituent (methyl or sulfate) on either Gal reinforced earlier findings on the specificity characteristics of Group A and Group B. Group A displayed a wider range of optimal activity (pH 6.0-7.4), whereas Group B possessed a peak of activity at pH 7.2. Mg2+ stimulated Group A 55% and Group B 150%, whereas Mn+2 stimulated Group B 130% but inhibited Group A 75%. Ca2+ stimulated Group B 100% but inhibited Group A 35%. Group A and Group B enzymes appeared to be of the same molecular size (<100,000 Da) as observed by Sephacryl S-100 HR column chromatography. The following effects upon Gal: 3-O-sulfotransferase activities by fucose, sulfate, and other substituents on the carbohydrate chains were noted. (1) A methyl or GlcNAc substituent on C-6 of GalNAc diminished the ability of Galbeta1,3GalNAc alpha-O-Al to act as an acceptor for Group A. (2) An alpha1,3-fucosyl residue on the beta1,6 branch in the mucin core structure did not affect the activity of Group A toward Gal linked beta1,3 to GalNAc alpha-. (3) Lewis x and Lewis a terminals did not serve as acceptors for either Group A or B enzymes. (4) Elimination of Group B activity on Gal in the beta1,6 branch owing to the presence of a 3-fucosyl or 6-sulfo group on GlcNAc did not hinder any action toward Gal linked beta1,3 to GalNAc alpha. (5) Group A activity on Gal linked beta1,3 to GalNAc remained unaffected by 3'-sulfation of the beta1,6 branch. The reverse was true for Group B. (6) The acceptor activity of the T-hapten was increased somewhat upon C-6 sulfation of GalNAc, whereas, C-6 sialylation resulted in an 85% loss of activity. (7) A novel finding was that Galbeta1,4GlcNAcbeta-O-Al and Galbeta1,3GlcNAcbeta-O-Al, upon C-6 sulfation of the GlcNAc moiety, became 100% inactive and 5- to 7-fold active, respectively, in their ability to serve as acceptors for Group B.  相似文献   

12.
The structures of acidic oligosaccharides synthesized by a transglycosylation reaction by Bacillus circulans beta-galactosidase, using lactose as the galactosyl donor, and N-acetylneuraminic acid (NeuAc) and glucuronic acid (GlcUA) as the acceptors were investigated. Acidic oligosaccharides thus synthesized were purified by anion exchange chromatography and charcoal chromatography. The MS and NMR studies indicated that the acidic oligosaccharides from NeuAc were Gal beta-(1-->8)-NeuAc, Gal beta-(1-->9)-NeuAc, and Gal beta-(1-->3)-Gal beta-(1-->8)-NeuAc, and those from GlcUA were Gal beta-(1-->3)-GlcUA and Gal beta-(1-->4)-Gal beta-(1-->3)-GlcUA. These are novel acidic galactooligosaccharides.  相似文献   

13.
A novel saccharide was synthesized by incubating globo-N-tetraose, GalNAc beta1-3Gal alpha1-4Gal beta1-4Glc, and UDP[3H]GlcNAc with hog gastric mucosal microsomes, known to contain beta1,6-N-acetylglucosaminyltransferase activity of a broad acceptor specificity. Chromatography and MALDI-TOF mass spectrometry of the product, as well as the amount of incorporated radioactivity indicated that one [3H]GlcNAc residue was transferred to the acceptor saccharide. One- and two-dimensional 1H NMR-spectroscopic analysis of the product and ESI-CID mass spectrometry of the pentasaccharide in permethylated form established its structure as GalNAc beta1-3([3H]GlcNAc beta1-6)Gal alpha1-4Gal beta1-4Glc. The new enzyme activity possesses substrate specificity features common to a purified beta1,6-GlcNAc-transferase from bovine tracheal epithelium, which forms branches at the subterminal beta1,3-substituted galactose and accepts both GlcNAc- and Gal-configuration at the terminal residue of the acceptor (Ropp et al. (1991) J. Biol. Chem., 266, 23863-23871). The new beta1,6-GlcNAc-branch was readily galactosylated by bovine milk beta1,4-galactosyltransferase, revealing a pathway to novel hybrid type glycans with N-acetyllactosamine chains on globotype saccharides. This pathway may lead to the rare IP blood-group antigen and to globoside-like molecules mediating cell adhesion.  相似文献   

14.
15.
Differentiating the binding properties of applied lectins should facilitate the selection of lectins for characterization of glycoreceptors on the cell surface. Based on the binding specificities studied by inhibition assays of lectin-glycan interactions, over twenty Gal and/or GalNAc specific lectins have been divided into eight groups according to their specificity for structural units (lectin determinants), which are the disaccharide as all or part of the determinants and of GalNAc alpha 1-->Ser (Thr) of the peptide chain. A scheme of codes for lectin determinants is illustrated as follows: (1) F (GalNAc alpha 1-->3GalNAc), Forssman specific disaccharide--Dolichos biflorus (DBL), Helix pomatia (HPL) and Wistaria floribunda (WFL) lectins. (2) A (GalNAc alpha 1-->3 Gal), blood group A specific disaccharide--Codium fragile subspecies tomentosoides (CFT), Soy bean (SBL), Vicia villosa-A4 (VVL-A4), and Wistaria floribunda (WFL) lectins. (3) Tn (GalNAc alpha 1-->Ser (Thr) of the protein core)--Vicia villosa B4 (VVL-B4), Salvia sclarea (SSL), Maclura pomifera (MPL), Bauhinia purpurea alba (BPL) and Artocarpus integrifolia (Jacalin, AIL). (4) T (Gal beta 1-->3GalNAc), the mucin type sugar sequences on the human erythrocyte membrane(T alpha), T antigen or the disaccharides at the terminal nonreducing end of gangliosides (T beta)--Peanut (PNA), Bauhinia purpurea alba (BPL), Maclura pomifera (MPL), Sophora japonica (SJL), Artocarpus lakoocha (Artocarpin) lectins and Abrus precatorius agglutinin (APA).(5) I and II (Gal beta 1-->3(4)GlcNAc)--the disaccharide residue at the nonreducing end of the carbohydrate chains derived from either N- or O-glycosidic linkage--Ricinus communis agglutinin (RCA1), Datura stramonium (TAL, Thorn apple), Erythrina cristagalli (ECL, Coral tree), and Geodia cydonium (GCL). (6) B (Gal alpha 1-->3Gal), human blood group B specific disaccharide--Griffonia(Banderiaea) simplicifolia B4 (GSI-B4). (7) E (Gal alpha 1-->4Gal), receptors for pathogenic E. coli agglutinin, Shiga toxin and Mistletoe toxic lectin-I (ML-I) and abrin-a.  相似文献   

16.
A partial structure of many glycoproteins, a glycosylated asparagine carrying a complex type undecasaccharide N-glycan (Neu5Ac(alpha 2-6)Gal(beta 1-4)GlcNAc(beta 1-2)Man alpha 1-3) [Neu5Ac(alpha 2-6)Gal(beta 1-4)GlcNAc(beta 1-2)Man(alpha 1-6)]Man(beta 1-4) GlcNAc(beta 1-4)GlcNAc-Asn) was obtained by total synthesis. As a starting material served a chemically synthesized diantennary heptasaccharide azide which was deprotected in a three-step sequence in high yield. The reduction of the anomeric azide was accomplished with propanedithiol in methanol-ethyldiisopropylamine. Coupling of the glycosyl amine to an activated aspartic acid gave the benzyl protected asparagine conjugate. After removal of the six benzyl functions the resulting free heptasaccharide asparagine was elongated enzymatically in the oligosaccharide part. The use of beta-1,4-galactosyltransferase and alpha-2,6-sialytransferase in the presence of alkaline phosphatase allowed the efficient transfer of four sugar units to the acceptor resulting in a full length N-glycan, a sialyated diantennary undecasaccharide-asparagine of the complex type.  相似文献   

17.
The patterns of ganglioside profiles were studied in 10 human glioma and one melanoma cell lines. Ganglio-series gangliosides, GM3 (NeuAc alpha2-3Gal beta1-4Glc beta1-Cer) and GM2 (GalNAc beta 1-4 (NeuAc alpha2-3)Gal beta1-4Glc beta 1-1Cer), and a neolacto-series ganglioside, sialylparagloboside (SPG) (NeuAc alpha 2-3Gal beta1-4GlcNAc beta1-3Gal beta1-4Glc beta1-1Cer), were the predominant constituents. The activities of the two key enzymes, GM3 synthetase and lactotriaosyl ceramide (Lc3Cer) synthetase, alone did not account for the ganglioside profile. Metabolic labeling with the use of [3H]glucosamine-HCl showed more pronounced difference in the synthetic rate of each ganglioside type, in which GM2 was the most strongly labeled in 7 out of the 10 glioma cell lines. On quantifying the chemical content of GM3 and GM2, the GM3/GM2 molar ratio of above 2.0 was arbitrarily classified into GM3 dominant type (KG-1C and Mewo); the ratio below 0.5 was designated as GM2 dominant type (H4, U138MG, U373MG, T98G and A172); and the ratio between 0.5 and 2.0 was regarded as GM3 and GM2-co-dominant type (U87MG, Hs683, SW1088 and U118MG). Subsequently, the capabilities of the antibody binding to these gangliosides were examined in native forms in the cell membrane and in chemically-isolated forms. The intensity of reaction against chemically isolated GM3 and GM2 gangliosides was dependent on the quantity, and GM2 was more reactive than GM3; however, the reactivities on the cell surface did not correlate with the chemical content indicating other factors to influence their immunoreactivities.  相似文献   

18.
Neutral glycosphingolipids were isolated from quail small intestine and their structures were analysed. They contained: Gal beta 1-4GlcCer(LacCer), Gal alpha 1-4GalCer(Ga2Cer), Gal alpha 1-4Gal beta 1-4GlcCer(Gb3Cer), GlcNAc beta 1-3Gal beta 1-4GlcCer(Lc3Cer), GalNAc beta 1-4Gal beta 1-4GlcCer(Gg3Cer), GalNAc beta 1-4[GalNAc beta 1-3] Gal beta 1-4GlcCer(LcGg4Cer), and GalNAc alpha 1-3GalNAc beta 1-3Gal alpha 1-4Gal beta 1-4GlcCer (Forssman glycolipid) as well as glucosylceramide, galactosylceramide (Nishimura K et al. 1984) Biochim Biophys Acta 796:269-76) and the LeX glycolipid, III3 Fuc alpha-nLc4Cer (Nishimura K et al. (1989) J. Biochem (Tokyo) 101:1315-18). The molecular species compositions of these glycosphingolipids were examined using fast atom bombardment-mass spectrometry linked with reversed-phase high-performance liquid chromatography. By such analysis, we could classify the quail glycosphingolipids into at least three classes: glycolipids rich in species having four hydroxyl groups in the ceramides (GalCer, Gg3Cer, LcGg4Cer and LeX), those rich in the ceramides of N-acyl trihydroxysphinganine with normal fatty acids (Lc3Cer), and glycolipids rich in the ceramides of N-acyl sphingenine with normal fatty acids (LacCer, Gb3Cer and Forssman glycolipid). Immunohistochemical observation implies that the differences in the hydrophobic moieties specified the localization of glycosphingolipids in the tissue.  相似文献   

19.
beta-Galactosidase from bovine testes was used in a one pot reaction together with a recombinant beta-1,6-GlcNAc transferase for the synthesis of GlcNAc(beta 1-6)GalNAc(alpha 1-OBn) (core 6-Bn). The galactosidase, which reversibly links galactose via a (beta 1-3) linkage to N-acetylgalactosamine, provides the substrate for the GlcNAc transferase in situ. The synthesis was carried out with a yield > 90%.  相似文献   

20.
beta-All-trans-retinoic acid (RA)-induced endodermal differentiation of mouse F9 teratocarcinoma cells is accompanied by changes in glycoprotein glycosylation, including expression of i antigen (i.e. polylactosamine) and leukophytohemagglutinin-reactive oligosaccharides (i.e. -GlcNAc beta 1-6Man alpha 1-6-branched N-linked). We have used the F9 teratocarcinoma cells as a model to study developmental regulation of glycosyltransferase activities which are responsible for the biosynthesis of beta 1-6GlcNAc-branched N- and O-linked oligosaccharides and polylactosamine. Growth of F9 cells in the presence of 10(-6) M RA for 4 days increased core 2 GlcNAc transferase and GlcNAc transferase V activities by 13- and 6-fold, respectively, whereas the activities of GlcNAc transferase I, beta 1-3GlcNAc transferase (i), beta 1-4Gal transferase, and beta 1-3Gal transferase increased 2-4-fold. Induction of glycosyltransferase activities by RA was dose-dependent and showed a biphasic response with approximately half of the increase observed 3 days after RA treatment and the remainder occurred by day 4. PYS-2, a parietal endoderm cell line, showed levels of glycosyltransferase activities similar to those of RA-treated F9 cells. Glycosyltransferase activities in the RA-resistant F9 cell line (RA-3-10) were low and showed only a small induction by RA. These observations suggest that differentiation of F9 cells is closely associated with induction of multiple glycosyltransferase activities, with most pronounced increases in GlcNAc transferase V and 2',5'-tetradenylate (core 2) GlcNAc transferase. The increase in GlcNAc transferase V was also reflected by the 4-6-fold increase in the binding of 125I-leukophytohemagglutinin to several cellular glycoproteins, which occurred after 3 days of RA treatment. The endo-beta-galactosidase-sensitive polylactosamine content of membrane glycoproteins and, in particular, the LAMP-1 glycoprotein was markedly increased after RA treatment of F9 cells. Consistent with these observations, fucosylated polylactosamine (i.e. dimeric Lex) was also increased in RA-treated cells. Analysis of the aryl oligosaccharides produced by F9 cells cultured in the presence of aryl alpha-D-GalNAc showed that RA treatment enhanced the synthesis of disialyl core 2 O-linked oligosaccharides and increased the polylactosamine content of the aryl oligosaccharides by > 20-fold. The results suggest that differentiation of F9 cells into endoderm is closely associated with increased GlcNAc transferase V and core 2 GlcNAc transferase activities, enzymes which control the level of beta 1-6GlcNAc-branched N- and O-linked oligosaccharides, the preferred substrates for polylactosamine addition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号