共查询到17条相似文献,搜索用时 0 毫秒
1.
Dual-mode reflectance and fluorescence near-video-rate confocal microscope for architectural, morphological and molecular imaging of tissue 总被引:1,自引:0,他引:1
ALICIA L. CARLSON LEZLEE G. COGHLAN† ANN M. GILLENWATER‡ & REBECCA R. RICHARDS-KORTUM§ 《Journal of microscopy》2007,228(1):11-24
We have developed a near‐video‐rate dual‐mode reflectance and fluorescence confocal microscope for the purpose of imaging ex vivo human specimens and in vivo animal models. The dual‐mode confocal microscope (DCM) has light sources at 488, 664 and 784 nm, a frame rate of 15 frames per second, a maximum field of view of 300 × 250 μm and a resolution limit of 0.31 μm laterally and 1.37 μm axially. The DCM can image tissue architecture and cellular morphology, as well as molecular properties of tissue, using reflective and fluorescent molecular‐specific optical contrast agents. Images acquired with the DCM demonstrate that the system has the sub‐cellular resolution needed to visualize the morphological and molecular changes associated with cancer progression and has the capability to image animal models of disease in vivo. In the hamster cheek pouch model of oral carcinogenesis, the DCM was used to image the epithelium and stroma of the cheek pouch; blood flow was visible and areas of dysplasia could be distinguished from normal epithelium using 6% acetic acid contrast. In human oral cavity tissue slices, DCM reflectance images showed an increase in the nuclear‐to‐cytoplasmic ratio and density of nuclei in neoplastic tissues as compared to normal tissue. After labelling tissue slices with fluorescent contrast agents targeting the epidermal growth factor receptor, an increase in epidermal growth factor receptor expression was detected in cancerous tissue as compared to normal tissue. The combination of reflectance and fluorescence imaging in a single system allowed imaging of two different parameters involved in neoplastic progression, providing information about both the morphological and molecular expression changes that occur with cancer progression. The dual‐mode imaging capabilities of the DCM allow investigation of both morphological changes as well as molecular changes that occur in disease processes. Analyzing both factors simultaneously may be advantageous when trying to detect and diagnose disease. The DCM's high resolution and near‐video‐rate image acquisition and the growing inventory of molecular‐specific contrast agents and disease‐specific molecular markers holds significant promise for in vivo studies of disease processes such as carcinogenesis. 相似文献
2.
Spatial resolution and the sensitivity to detect a fluorophore are the two most important optical parameters that characterize a confocal microscope. However, these are rather difficult to estimate quantitatively. We show that fluorescence correlation spectroscopy (FCS) provides an easy and reliable measure of these quantities. We modify existing schemes for performing FCS on a commercial confocal microscope to carry out these measurements, and provide an analysis routine that can yield the relevant quantities. Our method does not require any modification of the confocal microscope, yet it yields a robust measure of the resolution and sensitivity of the instrument. 相似文献
3.
A theoretical analysis of a new technique for fluorescence lifetime measurement, relying on (near steady state) excitation with short optical pulses, is presented. Application of the technique to confocal microscopy enables local determination of the fluorescence lifetime, which is a parameter sensitive to the local environment of fluorescent probe molecules in biological samples. The novel technique provides high time resolution, since it relies on the laser pulse duration, rather than on electronic gating techniques, and permits, in combination with bilateral confocal microscopy and the use of a (cooled) CCD, sensitive signal detection over a large dynamic range. The principle of the technique is discussed within a theoretical framework. The sensitivity of the technique is analysed, taking into account: photodegradation, the effect of the laser repetition rate and the effect of non-steady-state excitation. The features of the technique are compared to more conventional methods for fluorescence lifetime determination. 相似文献
4.
G. J. Brakenhoff H. T. M. van der Voort E. A. van Spronsen N. Nanninga 《Journal of microscopy》1989,153(2):151-159
The improved resolution and sectioning capability of a confocal microscope make it an ideal instrument for extracting three-dimensional information especially from extended biological specimens. The imaging properties, also with finite detection pinholes are considered and a number of biological applications demonstrated. 相似文献
5.
We implement a filterless illumination scheme on a hyperspectral fluorescence microscope to achieve full-range spectral imaging. The microscope employs polarisation filtering, spatial filtering and spectral unmixing filtering to replace the role of traditional filters. Quantitative comparisons between full-spectrum and filter-based microscopy are provided in the context of signal dynamic range and accuracy of measured fluorophores' emission spectra. To show potential applications, a five-colour cell immunofluorescence imaging experiment is theoretically simulated. Simulation results indicate that the use of proposed full-spectrum imaging technique may result in three times improvement in signal dynamic range compared to that can be achieved in the filter-based imaging. 相似文献
6.
Specimen-induced aberrations cause a reduction in signal levels and resolution in fluorescence microscopy. Aberrations also affect the image contrast achieved by these microscopes. We model the effects of aberrations on the fluorescence signals acquired from different specimen structures, such as point-like, linear, planar and volume structures, when imaged by conventional, confocal and two-photon microscopes. From this we derive the image contrast obtained when observing combinations of such structures. We show that the effect of aberrations on the visibility of fine features depends upon the specimen morphology and that the contrast is less significantly affected in microscopes exhibiting optical sectioning. For example, we show that point objects become indistinguishable from background fluorescence in the presence of aberrations, particularly when imaged in a conventional fluorescence microscope. This demonstrates the significant advantage of using confocal or two-photon microscopes over conventional instruments when aberrations are present. 相似文献
7.
Measurements of the transport of circulating sulphorhodamine B-labelled albumin into the arterial wall, made by applying digital imaging fluorescence microscopy to sections of arteries fixed in situ , are limited in sensitivity by the low levels of tracer fluorescence and high levels of autofluorescence emitted from the tissue. Three attempts to improve these ratios are described. In the first, spectra of the tracer in solution and of arterial autofluorescence were used to design novel microscope filters for rhodamine-like dyes. By exciting with the rarely used yellow lines of the mercury arc lamp and detecting a narrow band of emission with Stokes shifts as small as 15 nm, the ratio of tracer fluorescence to autofluorescence was tripled. In the second, effects of different fixatives were investigated. Using a model system, it was confirmed that Karnovsky's fixative gives good tracer immobilization but elevates autofluorescence, whereas fixative-free buffer solutions give low autofluorescence but do not retain the tracer. It was further found that simple formaldehyde-based fixatives, hitherto considered to be poor fixatives of albumin, immobilized the tracer as well as the glutaraldehyde-based fixative, whilst giving autofluorescence levels comparable to those seen with buffer alone; they therefore give excellent tracer fluorescence to autofluorescence ratios. In the third, lowering specimen temperature by 50 °C was found to increase the intensity of tracer fluorescence by 30% whilst autofluorescence was unaffected. These data may have relevance to microscopical studies using other tissues and fluorescent tracers. 相似文献
8.
Monomolecular films of polymerized dimethyl-bis[pentacosadiinoic-oxyethyl] ammonium bromide (EDIPAB) provide one- and two-photon excited fluorescence that is sufficiently high to quantify the axial resolution of 3-D fluorescence microscopes. When scanned along the optical axis, the fluorescence of these layers is bright enough to allow online observation of the axial response of these microscopes, thus facilitating alignment and fluorescence throughput control. The layers can be used for directly measuring and monitoring the axial response of 4Pi-confocal microscopes, as well as for their initial alignment and phase adjustment. The proposed technique has the potential to supersede the conventional technique of calculating the derivative of the axial edges of a thick fluorescent layer. Coverslips with EDIPAB-layers can be used as substrates for the cultivation of cells. 相似文献
9.
Y. ZHOU X. WU T. WANG T. MING P.N. WANG L.W. ZHOU J.Y. CHEN 《Journal of microscopy》2010,237(2):200-207
Two‐photon fluorescence microscopy and confocal reflectance microscopy were compared to detect intracellular gold nanorods in rat basophilic leukaemia cells. The two‐photon photoluminescence images of gold nanorods were acquired by an 800 nm fs laser with the power of milliwatts. The advantages of the obtained two‐photon photoluminescence images are high spatial resolution and reduced background. However, a remarkable photothermal effect on cells was seen after 30 times continuous scanning of the femto‐second laser, potentially affecting the subcellular localization pattern of the nanorods. In the case of confocal reflectance microscopy the images of gold nanorods can be obtained with the power of light source as low as microwatts, thus avoiding the photothermal effect, but the resolution of such images is reduced. We have noted that confocal reflectance images of cellular gold nanorods achieved with 50 μW 800 nm fs have a relatively poor resolution, whereas the 50 μW 488 nm CW laser can acquire reasonably satisfactory 3D reflectance images with improved resolution because of its shorter wavelength. Therefore, confocal reflectance microscopy may also be a suitable means to image intracellular gold nanorods with the advantage of reduced photothermal effect. 相似文献
10.
Viability of endolithic micro-organisms in rocks from the McMurdo Dry Valleys of Antarctica established by confocal and fluorescence microscopy 总被引:1,自引:0,他引:1
The rocks of the McMurdo Dry Valleys desert in Antarctica harbour endolithic communities of micro‐organisms such as lichens, fungi, cyanobacteria and bacteria. Establishing the physiological status and viability of these microbial colonies in their natural microhabitat has far‐reaching implications for understanding the microbial ecology of the harsh environment of this polar desert. Here we describe the use of confocal microscopy and a specific fluorescent probe (FUN‐1) to evaluate the metabolic activity of fungal cells. Application of confocal microscopy also served to identify living and dead bacteria or cyanobacteria using the fluorescent assay reagents Live/Dead SYTO 9 and propidium iodide or SYTOX Green, respectively. In addition, through the use of epifluorescence microscopy, live/dead bacteria and cyanobacteria could be detected by estimating fluorescence from their cell components provoked by simultaneously staining with nucleic acids stains such as DAPI and SYTOX Green. 相似文献
11.
K. D. NISWENDER S. M. BLACKMAN L. ROHDE M. A. MAGNUSON D. W. PISTON 《Journal of microscopy》1995,180(2):109-116
To determine the application limits of green fluorescent protein (GFP) as a reporter gene or protein tag, we expressed GFP by itself and with fusion protein partners, and used three different imaging methods to identify GFP fluorescence. In conventional epifluorescence photomicroscopy, GFP expressed in cells could be distinguished as a bright green signal over a yellow-green autofluorescence background. In quantitative fluorescence microscopy, however, the GFP signal is contaminated by cellular autofluorescence. Improved separation of GFP signal from HeLa cell autofluorescence was achieved by the combination of confocal scanning laser microscopy using 488-nm excitation, a rapid cut-on dichroic mirror and a narrow-bandpass emission filter. Two-photon excitation of GFP fluorescence at the equivalent of ? 390 nm provided better absorption than did 488-nm excitation. This resulted in increased signal/background but also generated a different autofluorescence pattern and appeared to increase GFP photobleaching. Fluorescence spectra similar to those of GFP alone were observed when GFP was expressed as a fusion protein either with glutathione-S-transferase (GST) or with glucokinase. Furthermore, purified GST?GFP fusion protein displayed an extinction coefficient and quantum yield consistent with values previously reported for GFP alone. In HeLa cells, the cytoplasmic GFP concentration must be greater than ? 1 μM to allow quantifiable discrimination over autofluorescence. However, lower expression levels may be detectable if GFP is targeted to discrete subcellular compartments, such as the plasma membrane, organelles or nucleus. 相似文献
12.
13.
We experimentally demonstrate, for the first time to the best of our knowledge, two-photon fluorescence imaging with a femtosecond optical parametric amplifier. In particular, we systematically compare the imaging depths of two-photon fluorescence microscopes based on three different excitation sources, including a femtosecond oscillator, a femtosecond regenerative amplifier and the optical parametric amplifier. The results show that the optical parametric amplifier can greatly extend the penetration depth by approximately 227% as compared with that obtained with the femtosecond oscillator due to effective suppression of scattering at longer wavelength and enhanced excitation efficiency enabled by higher pulse energy. 相似文献
14.
Y. SAKO A. SEKIHATA Y. YANAGISAWA M. YAMAMOTO Y. SHIMADA K. OZAKI & A. KUSUMI 《Journal of microscopy》1997,185(1):9-20
Two-photon excitation laser scanning fluorescence microscopy (2p-LSM) was compared with UV-excitation confocal laser scanning fluorescence microscopy (UV-CLSM) in terms of three-dimensional (3-D) calcium imaging of living cells in culture. Indo-1 was used as a calcium indicator. Since the excitation volume is more limited and excitation wavelengths are longer in 2p-LSM than in UV-CLSM, 2p-LSM exhibited several advantages over UV-CLSM: (1) a lower level of background signal by a factor of 6–17, which enhances the contrast by a factor of 6–21; (2) a lower rate of photobleaching by a factor of 2–4; (3) slightly lower phototoxicity. When 3-D images were repeatedly acquired, the calcium concentration determined by UV-CLSM depended strongly on the number of data acquisitions and the nuclear regions falsely exhibited low calcium concentrations, probably due to an interplay of different levels of photobleaching of Indo-1 and autofluorescence, while the calcium concentration evaluated by 2p-LSM was stable and homogeneous throughout the cytoplasm. The spatial resolution of 2p-LSM was worse by 10% in the focal plane and by 30% along the optical axis due to the longer excitation wavelength. This disadvantage can be overcome by the addition of a confocal pinhole (two-photon excitation confocal laser scanning fluorescence microscopy), which made the resolution similar to that in UV-CLSM. These results indicate that 2p-LSM is preferable for repeated 3-D reconstruction of calcium concentration in living cells. In UV-CLSM, 0.18-mW laser power with a 2.φ pinhole (in normalized optical coordinate) gives better signal-to-noise ratio, contrast and resolution than 0.09-mW laser power with a 4.9-φ pinhole. However, since the damage to cells and the rate of photobleaching is substantially greater under the former condition, it is not suitable for repeated acquisition of 3-D images. 相似文献
15.
Fluorescent immunoconjugates prepared with the europium chelate BHHCT (4,4'-bis(1',1',1',2',2',3',3'-heptafluoro-4',6'-hexanedion-6'-yl)-chlorosulfo-o-terphenyl) have previously been reported as suitable labels for time-resolved fluorescence applications. BHHCT is limited by a tendency to destabilize immunoglobulins when covalently bound to the protein at moderate to high fluorophore to protein ratios (F/P). We report a new derivative of BHHCT prepared by appending a short hydrophylic tether to the chlorosulfonate activating group on BHHCT. The new derivative, BHHST (4,4'-bis-(1',1',1',2',2',3',3'-heptafluoro-4',6'-hexanedion-6'-yl)sulfonylamino-propyl-ester-N-succinimide-ester-o-terphenyl), was activated to bind at the tether terminus with a succinimide leaving group that displayed less aggressive coupling activity and improved storage stability. BHHST has been used to prepare a stable and useful immunoconjugate with the anti-Cryptosporidium monoclonal antibody CRY104. The BHHST immunoconjugate provides more than a 10-fold enhancement in the signal to noise ratio (SNR) of labeled oocyst fluorescence over background when observed using TRFM techniques. An immunoconjugate was also prepared with BHHST and (goat) anti-mouse that effectively labeled Giardia cysts in situ. Detection of cysts with the TRFM was achieved with an 11-fold increase in SNR when a gate-delay of 60 micros was employed. The storage half-life of both immunoconjugates is extended more than 20-fold when compared to immunoconjugates prepared with BHHCT. 相似文献
16.
Digital imaging fluorescence microscopy (DIFM) of tissue sections was used to quantify uptake of labelled plasma proteins by the arterial wall. Several aspects of the measuring system were investigated so that absolute tracer concentrations and their local variation could be derived from digitized images. These investigations may be relevant to other studies employing DIFM. Nonlinearities were found to arise from offsets in the video digitizers, from background fluorescence and stray light within the microscope and from the transfer characteristics of the intensified CCD camera. Camera gain controls showed complex behaviour. Camera output fell substantially for several hours after switching on and was affected by room temperature. Large spatial variations in response were caused by the geometry of the microscope optics and by the image intensifier. However, the ratios between areas were not affected by light intensity or camera gain settings. Measured intensities were independent of the depthwise location of fluorophores within tissue sections but they were affected by the emission from objects outside the measuring area. Photobleaching of tracer varied significantly over the range of excitation intensities and durations used but was not concentration dependent. Methods used to correct these effects and obtain a uniform, linear and constant relationship between concentration and grey level are described. Using the system and appropriate corrections, in vivo uptake of sulphorhodamine-B-labelled serum albumin by the rabbit aortic wall was investigated. Results obtained for the mean uptake of tracer and its local variation were quantitatively similar to those previously obtained with nonmicroscopic methods. 相似文献
17.
We have employed field-emission secondary electron microscopy (FESEM) for morphological evaluation of freeze-fractured frozen-hydrated renal epithelial LLC-PK1 cells prepared with our simple cryogenic sandwich-fracture method that does not require any high-vacuum freeze-fracture instrumentation (Chandra et al. (1986) J. Microsc. 144 , 15–37). The cells fractured on the substrate side of the sandwich were matched one-to-one with their corresponding complementary fractured faces on the other side of the sandwich. The FESEM analysis of the frozen-hydrated cells revealed three types of fracture: (i) apical membrane fracture that produces groups of cells together on the substrate fractured at the ectoplasmic face of the plasma membrane; (ii) basal membrane fracture that produces basal plasma membrane-halves on the substrate; and (iii) cross-fracture that passes randomly through the cells. The ectoplasmic face (E-face) and protoplasmic face (P-face) of the membrane were recognized based on the density of intramembranous particles. Feasibility of fractured cells was shown for intracellular ion localization with ion microscopy, and fluorescence imaging with laser scanning confocal microscopy. Ion microscopy imaging of freeze-dried cells fractured at the apical membrane revealed well-preserved intracellular ionic composition of even the most diffusible ions (total concentrations of K+, Na+ and Ca+). Structurally damaged cells revealed lower K+ and higher Na+ and Ca+ contents than in well-preserved cells. Frozen-freeze-dried cells also allowed imaging of fluorescently labelled mitochondria with a laser scanning confocal microscope. Since these cells are prepared without washing away the nutrient medium or using any chemical pretreatment to affect their native chemical and structural makeup, the characterization of fracture faces introduces ideal sample types for chemical and morphological studies with ion and electron microscopes and other techniques such as laser scanning confocal microscopy, atomic force microscopy and near-field scanning optical microscopy. 相似文献