首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
In this article, nonlinear flexural behaviour of laminated composite doubly curved shell panel is investigated under hygro-thermo-mechanical loading by considering the degraded composite material properties through a micromechanical model. The laminated panel is modelled using higher order shear deformation mid-plane kinematics and Green–Lagrange geometric nonlinear strain displacement relations. In the present case, all the nonlinear higher order terms are included in the mathematical model to obtain the exact flexure of the structural panel. The nonlinear system governing equations are derived using variational method and discretised using the nonlinear finite element steps. Numerical results are computed through direct iterative method and validated by comparing with those published results available in open literature. Finally, wide variety of numerical examples are computed using the proposed model to address the effect of hygrothermal conditions, geometrical and material parameters and support conditions on the flexural behaviour of laminated composite doubly curved shell panel.  相似文献   

2.
A Fortran computer program is described which calculates physical quantities for a class of shell triangular elements undergoing inextensional bending. These elements are in quadratic parametric representation and may have positive, zero or negative Gaussian curvature. The exact inextensional bending solutions for the rectangular displacement components are cubic in the surface co-ordinates and the curvature changes are relatively slowly varying.  相似文献   

3.
This paper describes an algorithm which reduces the apparently diverse and complicated matrix calculations required to evaluate the finite element matrices of doubly curved quadrilateral shell finite elements to a few basic manipulations which are then repeated a large number of times. The algorithm can be transcribed particularly quickly into computer code. It lends itself to a structured programming approach and the flexibility of the ensuing coding is high. The accuracy of the code can be ascertained with relative ease and fault-finding is comparatively straightforward; hence, a high degree of confidence can be placed in its execution. The element chosen to illustrate the application of the algorithm is a particularly difficult example. It is expected that the algorithm described would be useful in a wide variety of finite element computer program applications.  相似文献   

4.
This paper presents an efficient numerical integration scheme for evaluating the matrices (stiffness, mass, stress-stiffness and thermal load) for a doubly curved, multilayered, composite, quadrilateral shell finite element. The element formulation is based on three-dimensional continuum mechanics theory and it is applicable to the analysis of thin and moderately thick composite shells. The conventional formulation requires a 2 × 2 × 2 or 2 × 2 × 1 Gauss integration per layer for the calculation of element matrices. This method becomes uneconomical when a large number of layers is used owing to an excessive amount of computations. The present formulation is based on explicit separation of the thickness variable from the shell surface parallel variables. With the through-thickness variables separated, they are combined with the thickness dependent material properties and integrated separately. The element matrices are computed using the integrated material matrices and only a 2 × 2 spatial Gauss integration scheme. The response results using the present formulation are identical to those obtained using the conventional formulation. For a small number of layers, the present method requires slightly more CPU time. However, for a larger number of layers, numerical data are presented to demonstrate that the present formulation is an order-of-magnitude economical compared to the conventional scheme.  相似文献   

5.
Nonlinear free vibration behavior of laminated composite curved panel under hygrothermal environment is investigated in this article. The mathematical model of the laminated panel is developed using Green–Lagrange-type geometrical nonlinearity in the framework of higher-order mid-plane kinematics. The corrugated composite properties are evaluated through the micromechanical model and all the nonlinear higher-order terms are included in the present model for the sake of generality. The equation of vibrated panel is obtained using Hamilton's principle and discretized with the help of the finite element steps. The solutions are computed numerically using the direct iterative method. The effect of parameters on the nonlinear vibration responses is examined thoroughly by solving the wide variety of numerical examples.  相似文献   

6.
A new local high-order deformable theory of laminated composite/sandwich plates is presented here. The displacement fields of each discrete layer were assumed in the present theory to be of a high-order polynomial series through layer-thickness. The displacement and traction continuity conditions at the interface between layers and the traction conditions at the outer surfaces were imposed as the constraint conditions, and introduced into the potential energy functional by the Lagrange multiplier method. The equations of motion and admissible boundary conditions were given on the basis of the present theory by using the generalized variational principle. Pagano's 3-D elasticity solutions of generally rectangular laminated composite/sandwich plates, fully simply supported, subjected to transverse sinusoidal loading were used for assessment of the present theory and other theories discussed in previous literature. The present theory was found to agree very closely with 3-D elasticity solutions.  相似文献   

7.
The efficiency of a field-consistent two-noded linear curved axisymmetric shear-flexible shell element is shown to be due to the removal of both shear and membrane locking. Typical applications illustrate how the field-consistent representation dramatically improves performance, and allows greater flexibility in tailoring element design to satisfy specific problem needs.  相似文献   

8.
A linear theory for facet-like thin elastic shells is derived where strain/displacement, curvature change/displacement and constitutive relations appear the same as for flat plates. Application of Koiter's arguments shows that the theory is a valid first approximation. The theory is of interest for limiting cases of faceted finite element analysis of smooth shells. Although the final equations of facet-like shell theory do not have quite as simple a form as more conventional equations it is possible that their derivation from equations for flat plates may appeal to engineers. A specialization of the equations is given to circular cylindrical shells where four simple illustrative examples show no essential differences with results from more conventional theory.  相似文献   

9.
A curved three-noded quadratic isoparametric axisymmetric thick shell element is developed. Field-consistency interpretations allow various configurations of the element to be designed so as to satisfy specific problem needs. Typical applications demonstrate the versatility and accuracy of this element in its different problem-specific forms.  相似文献   

10.
In this work, we have developed a state-based peridynamics theory for nonlinear Reissener-Mindlin shells to model and predict large deformation of shell structures with thick wall. The nonlocal peridynamic theory of solids offers an integral formulation that is an alternative to traditional local continuum mechanics models based on partial differential equations. This formulation is applicable for solving the material failure problems involved in discontinuous displacement fields. The governing equations of the state-based peridynamic shell theory are derived based on the nonlocal balance laws by adopting the kinematic assumption of the Reissner and Mindlin plate and shell theories. In the numerical calculations, the stress points are employed to ensure the numerical stability. Several numerical examples are conducted to validate the nonlocal structure mechanics model and to verify the accuracy as well as the convergence of the proposed shell theory.  相似文献   

11.
The primary objective of this study is threefold: (1) to present a general higher-order shell theory to analyze large deformations of thin or thick shell structures made of general compressible hyperelastic materials; (2) to formulate an efficient shell theory using the orthonormal moving frame, and (3) to develop and apply the nonlinear weak-form Galerkin finite element model for the proposed shell theory. The displacement field of the line normal to the shell reference surface is approximated by the Taylor series/Legendre polynomials in the thickness coordinate of the shell. The use of an orthonormal moving frame makes it possible to represent kinematic quantities (e.g., the determinant of the deformation gradient) in a far more efficient manner compared with the nonorthogonal covariant bases. Kinematic quantities for the shell deformation are obtained in a novel way in the surface coordinate described in the appendix of this study with the help of exterior calculus. Furthermore, the governing equation of the shell deformation has been derived in the general surface coordinates. To obtain the nonlinear solution in the quasi-static cases, we develop the weak-form finite element model in which the reference surface of the shell is modeled exactly. The general invariant based compressible hyperelastic material model is considered. The formulation presented herein can be specialized for various other nonlinear compressible hyperelastic constitutive models, for example, in biomechanics and other soft-material problems (e.g., compressible neo-Hookean material, compressible Mooney–Rivlin material, Saint Venant–Kirchhoff model, and others). A number of numerical examples are presented to verify and validate the formulation presented in this study. The scope of potential extensions are outlined in the final section of this study.  相似文献   

12.
Geometrically nonlinear vibrations of functionally graded (FG) doubly curved shells subjected to thermal variations and harmonic excitation are investigated via multi-modal energy approach. Two different nonlinear higher-order shear deformation theories are considered and it is assumed that the shell is simply supported with movable edges. Using Lagrange equations of motion, the energy functional is reduced to a system of infinite nonlinear ordinary differential equations with quadratic and cubic nonlinearities which is truncated based on solution convergence. A pseudo-arclength continuation and collocation scheme is employed to obtain numerical solutions for shells subjected to static and harmonic loads. The effects of FGM power law index, thickness ratio and temperature variations on the frequency–amplitude nonlinear response are fully discussed and it is revealed that, for relatively thick and deep shells, the Amabili–Reddy theory which retains all the nonlinear terms in the in-plane displacements gives different and more accurate results.  相似文献   

13.
On the basis of the Hellinger–Reissner (H–R) principle, an asymptotic finite strip method (FSM) for the analysis of doubly curved laminated shells is presented by means of perturbation. In the formulation the displacements and transverse stresses are taken as the functions subject to variation. Imposition of the stationary condition of the H–R functional, the weak formulation associated with the Euler–Lagrange equations of three-dimensional (3D) elasticity is obtained. Upon introducing a set of appropriate dimensionless scaling and bringing the transverse shear deformations to the stage at the leading-order level, the weak formulation is asymptotically expanded as a series of weak-form equations for various orders. An asymptotic FSM according to the present formulation is then developed where the field variables are interpolated as a finite series of products of trigonometric functions and crosswise polynomial functions independently. Through successive integration, the present formulation turns out that three mid-surface displacement degrees-of-freedom (DOF) and two rotation DOF for each node in a strip element are taken as the independent unknowns in the system equations for various orders. The solution procedure for the leading-order level can be repeatedly applied level-by-level in a consistent and hierarchic way. Application of the asymptotic FSM to a benchmark problem is demonstrated.  相似文献   

14.
《Composites Part B》2000,31(1):65-74
A numerical method that predicts through-the-thickness stresses accurately by using in-plane displacement of Efficient Higher Order Shell Theory (EHOST) as a postprocessor is implemented in nine-noded doubly curved shell element. In the present study, an efficient postprocess method is developed in the framework of shell finite element without losing the accuracy of solutions. This method consists of two steps. First is to obtain the relationship between shear angles of First Order Shear Deformation Theory (FSDT) and EHOST. Second is to construct accurate displacement and stress fields from the FSDT solution by using EHOST displacement fields as a postprocessor. To obtain accurate transverse shear stresses, integration of equilibrium equation approach is used. In the course of calculating transverse shear stresses, the computation of third derivatives of transverse deflection is required. Simply supported curved panels and finite cylinder problems demonstrate economical and accurate solution of laminate composite shells provided by the present method. The present postprocess method should work as an efficient tool in the stress analysis of multilayered thick shells.  相似文献   

15.
We present a finite element (FE) formulation for the free vibration analysis of doubly curved laminated composite and sandwich shells having multiple delaminations, employing a facet shell element based on the efficient third-order zigzag theory and the region approach of modeling delaminations. The methodology, hitherto not attempted, is general for delaminations occurring at multiple interfacial and spatial locations. A recently developed hybrid method is used for satisfying the continuity of the nonlinear layerwise displacement field at the delamination fronts. The formulation is shown to yield very accurate results with reference to full-field three-dimensional FE solutions, for the natural frequencies and mode shapes of delaminated shallow and deep, composite and highly inhomogeneous soft-core sandwich shells of different geometries and boundary conditions, with a significant computational advantage. The accuracy is sensitive to the continuity method used at the delamination fronts, the usual point continuity method yielding rather poor accuracy, and the proposed hybrid method giving the best accuracy. Such efficient modeling of laminated shells with delamination damage will be of immense use for model-based techniques for structural health monitoring of laminated shell-type structures.  相似文献   

16.
A new curved quadrilateral composite shell element using vectorial rotational variables is presented. An advanced co‐rotational framework defined by the two vectors generated by the four corner nodes is employed to extract pure element deformation from large displacement/rotation problems, and thus an element‐independent formulation is obtained. The present line of formulation differs from other co‐rotational formulations in that (i) all nodal variables are additive in an incremental solution procedure, (ii) the resulting element tangent stiffness is symmetric, and (iii) is updated using the total values of the nodal variables, making solving dynamic problems highly efficient. To overcome locking problems, uniformly reduced integration is used to compute the internal force vector and the element tangent stiffness matrix. A stabilized assumed strain procedure is employed to avoid spurious zero‐energy modes. Several examples involving composite plates and shells with large displacements and large rotations are presented to testify to the reliability, computational efficiency, and accuracy of the present formulation. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

17.
Temperature load on a shell is usually represented as initial strains in the tangent plane directions of the shell, since strains in shell surface normal directions are neglected. It is shown, however, that this simplification may give rise to significant errors for thick curved shell elements. A procedure to overcome this problem is presented. In particular the eight-node subparametric thick shell element is considered.  相似文献   

18.
A hitherto unavailable Levy type analytical solution to the problem of deformation of a finite-dimensional general cross-ply thick doubly curved panel of rectangular plan-form, modeled using a higher order shear deformation theory (HSDT), is presented. A solution methodology, based on a boundary-discontinuous generalized double Fourier series approach is used to solve a system of five highly coupled linear partial differential equations, generated by the HSDT-based general cross-ply shell analysis, with the SS2-type simply supported boundary condition prescribed on two opposite edges, while the remaining two edges are subjected to the SS3-type constraint. The numerical accuracy of the solution is ascertained by studying the convergence characteristics of deflections and moments of a moderately thick cross-ply spherical panel. Hitherto unavailable important numerical results presented include sensitivity of the predicted response quantities of interest to lamination, lamina material property, and thickness and curvature effects, as well as their interactions.  相似文献   

19.
Summary For shells of finite deformations, a non-linear theory will be derived using the Kirchhoff-Love assumption. Its derivation is accomplished by a variational procedure ensuring a consistent formulation. Special attention is confined to the correct derivation of the dynamic boundary conditions which succeeds by introduction of a rotation vector connected with the rotational movement of the normal vector of the middle surface. The paper closes with the operator formulation of the theory which demonstrates the characteristic properties of the non-linear theories in a very general manner.With 1 Figure  相似文献   

20.
Y Nath  K Sandeep 《Sadhana》2000,25(4):343-352
Dynamic analogues of von Karman-Donnell type shell equations for doubly curved, thin isotropic shells in rectangular planform are formulated and expressed in displacement components. These nonlinear partial differential equations of motion are linearized by using a quadratic extrapolation technique. The spatial and temporal discretization of differential equations have been carried out by finite-degree Chebyshev polynomials and implicit Houbolt timemarching techniques respectively. Multiple regression based on the least square error norm is employed to eliminate the incompatability generated due to spatial discretization (equations>unknowns). Spatial convergence study revealed that nine term expansion of each displacement inx andy respectively, is sufficient to yield fairly accurate results. Clamped and simply supported immovable doubly curved shallow shells are analysed. Results have been compared with those obtained by other numerical methods. Considering uniformly distributed normal loading, the results of static and dynamic analyses are presented. A list of symbols is given at the end of the paper  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号