首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
GaN材料及其有关光电子器件的研制是近年来光电子研究领域内的研究热点之一,而键合技术又是光电子集成研究领域内一项新的制作工艺。利用键合技术也可以研制出一些新型的光电子器件,这些器件用其他生长技术是不可能实现的。概括地介绍了近年来键合技术在GaN光电子器件及其集成领域内的研究进展和应用情况。  相似文献   

2.
石墨烯是具有高迁移率、高热导率、高比表面积、高透过率及良好的机械强度等特性的二维材料,在光电子器件领域被广泛用作透明电极及电荷传输层等。但由于石墨烯是零带隙材料,为半金属性,限制了其在半导体光电子器件领域的应用。为更加切合半导体产业应用的要求,构建异质结已经成为相关领域实现应用的重要途径。国际上已有较多团队开展了石墨烯异质结相关研究,目前已有较多报道。本文从石墨烯的性质出发,讲述了石墨烯异质结的发展历程,制备方法,并从材料制备与器件结构的角度总结了基于石墨烯异质结光电子器件的研究进展。最后,对石墨烯异质结在光电子器件领域的发展进行了展望。  相似文献   

3.
In this paper, present experimental investigations on the radiation hardness of GaN-based Schottky diode photodetectors. High-power ultraviolet (UV) radiation obtained from a Xenon lamp is used as the light source for the optical-stressing experiment. Two types of devices are being investigated. One has a double-buffer-layer structure that consists of a conventional high-temperature AlN buffer layer and an intermediate temperature buffer layer (type I), and the control device was fabricated with only a conventional AlN buffer layer (type II). Detailed current-voltage, capacitance-voltage, flicker noise, and responsivity measurements performed on the detectors show that the degradations of the devices arose from the defects present at the Schottky junctions due to the exposure of the devices to the high-power UV radiation. Both types of devices exhibit degradation in their optoelectronic properties. However, type-I devices, in general, exhibit gradual and slow degradation, whereas type-II devices exhibit catastrophic breakdowns in the device characteristics. The experimental data indicate significant improvement in the radiation hardness for type-I devices  相似文献   

4.
InP/Si键合技术研究进展   总被引:1,自引:1,他引:0  
InP材料及其器件的研制是近年来研究热点之一,而键合技术又是光电子集成研究领域内一项新的制作工艺。利用键合技术结合离子注入技术可以InP薄膜及器件集成到Si衬底上,改善机械强度,降低成本,具有非常诱人的应用前景。概括地介绍了近年来InP在Si上的键合工艺及层转移技术研究进展,并对InP和Si的几种键合工艺进行了分析。降低InP和Si键合温度,进行低温键合是其发展趋势。比较几种键合技术,利用等离子活化辅助键合是降低键合温度的有效途径。  相似文献   

5.
6.
谢世钟 《电信科学》2002,18(9):29-33
光网络正在向高速大容量、良好的扩展性和智能化的方向发展。自动交换光网络的出现是光传送网技术的重要突破,光电子器件功能的增强与性能的提高将对其实现与发展起决定性作用。本文介绍了自动交换光网络中一些光电子器件的重要特性和发展趋势。  相似文献   

7.
宋登元 《微电子学》1993,23(1):25-29
微电子学和光电子学的迅速发展,要求能对掺入半导体晶片中的杂质数量、深度和浓度分布进行精密控制,因此原子平面掺杂和超浅层掺杂技术已成为发展新器件的重要工艺之一。本文介绍了当前三种主要的浅层或薄层平面掺杂技术的特点,并简要论述了它们在光电子器件和集成电路中的应用。  相似文献   

8.
Si-based optoelectronics is becoming a very active research area due to its potential applications to optical communications. One of the major goals of this study is to realize all-Si optoelectronic integrated circuit. This is due to the fact that Si- based optoelectronic technology can be compatible with Si microelectronic technology. If Si - based optoelectronic devices and integrated circuits can be achieved, it will lead to a new irtformational technological revolution. In the article, the current developments of this exciting field are mainly reviewed in the recent years. The involved contents are the realization of various Si- based optoelectronic devices, such as light- emitting diodes, optical waveguides devices, Si photonic bandgap crystals, and Si laser,etc. Finally, the developed tendency of all-Si optoelectronic integrated technology are predicted in the near future.  相似文献   

9.
Modular production is a convenient strategy that not only realizes the mass production of conjugated materials, but also precisely regulates their photoelectrical property for optoelectronic applications. Diarylfluorene is a functional building block in constructing organic semiconductors arising from its special electronic, spacial, and conformational structure. Because of easy chemical modification, tunable electronic structure, and high photoluminescence quantum yield, diarylfluorene-based conjugated materials have undergone remarkable development in variety of low-cost optoelectronic devices. Herein, the authors present an overview mainly to describe the recent research progresses of diarylfluorene-based molecules, including 9,9′-diarylfluorene, heteroatom-containing spirocyclic diarylfluorene, and 4-position substituted 9,9′-diarylfluorene. The synthetic routes, molecular structures as well as their diverse applications toward optoelectronic devices are introduced and summarized systematically. Finally, the future challenges and development are also discussed in this vital research field.  相似文献   

10.
Since two-dimensional (2D) graphene was fabricated successfully, many kinds of graphene-like 2D materials have attracted extensive attention. Among them, the studies of 2D metal chalcogenides have become the focus of intense research due to their unique physical properties and promising applications. Here, we review significant recent advances in optoelectronic properties and applications of 2D metal chalcogenides. This review highlights the recent progress of synthesis, characterization and isolation of single and few layer metal chalcogenides nanosheets. Moreover, we also focus on the recent important progress of electronic, optical properties and optoelectronic devices of 2D metal chalcogenides. Additionally, the theoretical model and understanding on the band structures, optical properties and related physical mechanism are also reviewed. Finally, we give some personal perspectives on potential research problems in the optoelectronic characteristics of 2D metal chalcogenides and related device applications.  相似文献   

11.
脉冲激光沉积(PLD)技术凭借其低温生长优势,逐步在GaN薄膜外延领域得到广泛应用。回顾了近年来PLD技术外延生长GaN薄膜的研究进展,包括新型衬底上的GaN薄膜外延研究进展,以及作为克服异质外延的重要手段——缓冲层技术的发展现状。从目前的研究进展可以看出,应用PLD技术制备GaN薄膜及其光电器件具有广阔的发展前景。  相似文献   

12.
Both photodetectors (PDs) and optoelectronic synaptic devices (OSDs) are optoelectronic devices converting light signals into electrical responses. Optoelectronic devices based on organic semiconductors and halide perovskites have aroused tremendous research interest owing to their exceptional optical/electrical characteristics and low-cost processability. The heterojunction formed between organic semiconductors and halide perovskites can modify the exciton dissociation/recombination efficiency and modulate the charge-trapping effect. Consequently, organic semiconductor/halide perovskite heterojunctions can endow PDs and OSDs with high photo responsivity and the ability to simulate synaptic functions respectively, making them appropriate for the development of energy-efficient artificial visual systems with sensory and recognition functions. This article summarizes the recent advances in this research field. The physical/chemical properties and preparation methods of organic semiconductor/halide perovskite heterojunctions are briefly introduced. Then the development of PDs and OSDs based on organic semiconductor/halide perovskite heterojunctions, as well as their innovative applications, are systematically presented. Finally, some prospective challenges and probable strategies for the future development of optoelectronic devices based on organic semiconductor/halide perovskite heterojunctions are discussed.  相似文献   

13.
Silicon photonics is an emerging competitive solution for next-generation scalable data communications in different application areas as high-speed data communication is constrained by electrical interconnects. Optical interconnects based on silicon photonics can be used in intra/inter-chip interconnects, board-to-board interconnects, short-reach communications in datacenters, supercomputers and long-haul optical transmissions. In this paper, we present an overview of recent progress in silicon optoelectronic devices and optoelectronic integrated circuits(OEICs) based on a complementary metal-oxide-semiconductor-compatible process, and focus on our research contributions. The silicon optoelectronic devices and OEICs show good characteristics, which are expected to benefit several application domains, including communication, sensing, computing and nonlinear systems.  相似文献   

14.
介绍了多孔硅的形成方法及其机理。对国内外有关该材料在固体发光方面的研究现状和进展及其在光电器件上的应用作了讨论。  相似文献   

15.
纳米发光材料及器件的研究发展   总被引:2,自引:0,他引:2       下载免费PDF全文
周立新 《电子器件》2001,24(4):404-409
纳米发光材料及相关器件是近年来国际上的一个研究热点。本文对这方面的主要研究方向如硅基纳米发光材料、纳米粉末发光材料、碳纳米管的场发射等研究进展进行了综述。这些纳米材料在光电集成、信息显示等领域具有重要的学术意义和良好的市场前景。  相似文献   

16.
吴冰冰  余冰雁  伍剑  林金桐 《电信科学》2017,33(10):155-162
介绍了第43届欧洲光通信会议的概况,评述了主题报告、专题研讨、综述指导报告和特邀报告、截后论文和展览会等内容。按照光纤、光纤器件和光纤放大器,集成光电器件和光处理器,光通信系统数字技术,传输子系统和光网络单元,数据通信和计算机硬件,点到点传输链路,核心、城域和数据中心网络,接入、本地和家庭网络8个方向进行探讨。  相似文献   

17.
Optoelectronic devices with a wide temperature operating range are required for metropolitan and access networks. The temperature sensitivity of the threshold current depends on the conduction band offset of the active layer. The design of optoelectronic devices is strictly limited by the lattice constant of the substrates. Conventional InP-based lasers with InGaAsP multiple quantum wells (MQWs) are sensitive to the ambient temperature and require additional temperature control devices. This is due to the small conduction band offset of the active layer.  相似文献   

18.
This paper presents a three-dimensional, highly parallel, optically interconnected system to process high-throughput stream data such as images. The vertical optical interconnections are realized using. Integrated optoelectronic devices operating at wavelengths to which silicon is transparent. These through-wafer optical signals are used to vertically optically interconnect stacked silicon circuits. The thin film optoelectronic devices are bonded directly to the stacked layers of silicon circuitry to realize self-contained vertical optical interconnections. Each integrated circuit layer contains analog interface circuitry, namely, detector amplifier and emitter driver circuitry, and digital circuitry for the network and/or processor, all of which are fabricated using a standard silicon integrated circuit foundry. These silicon circuits are post processed to integrate the thin film optoelectronics using standard, low cost, high yield microfabrication techniques. The three-dimensionally integrated architectures described herein are a network and a processor. The network has been designed to meet off-chip I/O using a new offset cube topology coupled with naming and renting schemes. The performance of this network is comparable to that of a three-dimensional mesh. The processing architecture has been defined to minimize overhead for basic parallel operations. The system goal for this research is to develop an integrated processing node for high-throughput, low-memory applications  相似文献   

19.
In this paper, over 1.1 eV continuous tuning of metal oxides workfunction is realized by cesium intercalation, making the metal oxide function as both electron transport layer and hole transport layer in organic optoelectronic devices. The demonstrated metal oxides are commonly used molybdenum oxide and vanadium oxide. The proposed approach of synthesizing cesium intercalated metal oxides has interesting properties of room‐temperature, ambient atmosphere, water free and solution process, favoring the formation of metal oxides as carrier transport layers at different regions in multilayered devices and large scale fabrication of organic optoelectronics at low cost. Besides the wide range of controllable workfunction adjustment, band structures, and electrical properties are investigated in detail, to understand the effects of cesium intercalation on metal oxides. The device results show that, using the proposed cesium intercalation approach, each of the two investigated metal oxides can function as both ETL and HTL in organic solar cells and organic light emitting diodes with very good device performances. Consequently, with the interesting properties in film synthesis, the proposed cesium intercalated metal oxides can achieve continuously workfunction tuning over a large range and contribute to evolution of the simple route for fabricating high performance organic optoelectronic devices.  相似文献   

20.
Si基光电子学研究进展   总被引:6,自引:1,他引:6  
作为“第二代硅”Si基异质结材料为世人所瞩目,Si基光电子器件及光电集成(OEIC)是当前世界范围的热门课题,本文综述Si基异质材料的外延生长和特性,Si基光电子器件的结构和性能及其应用,着重介绍SiGe/Si的研究进展。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号