首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 187 毫秒
1.
铝对镁碳储氢材料性能的影响   总被引:1,自引:1,他引:0  
在球磨法制备镁碳储氢材料的过程中添加铝,制备了储氢材料50Mg40C10Al.用透射电子显微镜、X射线衍射和差示扫描量热分析对储氢材料的粒度、结构和教氢温度进行了测定.结果表明,球磨过程中铝不储氢;添加铝能提高铗碳储氢材料的储氢密度并降低其放氢温度,50Mg40C10Al的储氢密度达5.82%(质量分数),初始放氢温度为227.4℃.  相似文献   

2.
将微晶碳和镁粉在H2气氛中反应球磨复合,球磨时间为3h,制备的镁碳复合材料的平均粒度在20~120nm,说明适量微晶碳的引入,在短时间内,可实现镁粉的纳米化。对其进行吸氢性能研究,70Mg30C材料的储氢密度,在8min内可达5.0%(wt),微晶碳含量越高,储氢时间越短。储氢体系温度瞬间升高200℃,得益于微晶碳在球磨中的助磨作用和镁粉吸氢的催化作用。  相似文献   

3.
球磨时间对镁碳复合储氢材料结构和性能的影响   总被引:2,自引:0,他引:2  
采用氢气气氛中高能球磨反应法,制备了40Mg60C镁碳复合储氢材料,研究了球磨时间对材料粒度、晶体结构和放氢性能的影响.结果表明,球磨2h材料的粒度即可达纳米级,约10~20nm,球磨时间再延长,材料团聚程度加重;球磨2h的材料为纳米晶和非晶结构,当球磨时间增加到4h时,材料几乎成为非晶结构;球磨时间4h时,材料储氢量已趋于饱和,最大放氢量为3.15%(质量分数);材料放氢温度随球磨时间的增加而降低,球磨5h材料的初始放氢温度和放氢峰温降为275.18和314.94℃.  相似文献   

4.
采用氢气反应球磨法,将煤基微晶碳及少量Ni和Al添加到镁粉中在1MPa氢气中球磨3h制得储氢材料67Mg29C3Ni1Al.放氢测试结果表明,温度越高,放氢速度越快,放氢量越大,数据拟舍得出放氢反应为表观一级反应.根据阿伦尼乌斯方程计算得出,在300~350℃范围内,放氢反应表观活化能为(138.0±6)kJ/mol.与储氢材料70Mg30C及纯MgH2相比,微晶碳和催化剂Ni、Al缩短了储氢材料的放氢时间,加快了放氢速度,提高了放氢量,降低了表观活化能,放氢动力学性能得到了改善.  相似文献   

5.
将针状焦用于氢气反应球磨法制备镁基储氢材料.采用透射电子显微镜、X射线衍射仪、差示扫描量热分析仪、排水法放氢测试装置分别对材料的形貌、晶相、放氢温度、放氢量进行了分析.结果表明,针状焦是镁粉的高效助磨剂,添加5%(质量分数)的针状焦即可基本消除镁粉"冷焊"现象,经3h球磨后镁粉粒度达20~60nm,镁氢化生成MgH2,储氢材料的初始放氢温度为324.2℃,放氢量高达4.35%(质量分数).当针状焦的添加量过大时,针状焦过度的润滑作用不利于镁颗粒的粉碎和吸氢.  相似文献   

6.
将TiO2引入镁碳复合材料中反应球磨,在快速纳米化的过程中,TiO2纳米颗粒较容易镶嵌到金属Mg和碳的基体中,对复合材料的吸放氢性能具有良好的催化作用。DSC分析表明,(70Mg30C)2TiO2材料的初始放氢温度比MgH2降低了95℃,高峰放氢温度也降低了80℃。当TiO2的添加量为2%(质量分数,下同)时,(70Mg30C)2TiO2反应球磨储氢密度达到最大值4.78%,300℃放氢量达到3.75%。  相似文献   

7.
引入微晶碳与Mg、Ni等金属复合,制备了70Mg30C4Ni复合储氢材料,其储氢密度在4.56%(质量分数)以上,放氢量为4.50%(质量分数),放氢时间为8min.260℃恒温放氢在65min内可释放出77%的氢气,说明Ni对镁碳复合储氢材料放氢性能具有较好的催化作用.通过计算,其平均纳米晶粒度为27.6nm.  相似文献   

8.
碳助磨制备纳米镁铝储氢合金的结构及储氢性能研究   总被引:1,自引:0,他引:1  
以改性无烟煤为助磨剂,在氢气气氛下球磨制备了具有纳米结构的镁铝合金储氢材料,通过SEM,XRD,TPD等手段对比研究了球磨吸氢材料及静态再吸氢材料的晶相结构及放氢动力学性能.结果表明:改性无烟煤具有良好的助磨作用,经5.5h球磨,材料平均粒度可达74nm;镁铝合金经反应球磨后,其中的Mg转化成了β-MgH2和γ-MgH2,放氢峰温低于300℃;静态再吸氢后,MgH2全部以β-MgH2存在,且晶体粒度增长60%,Mg17Al12分解为单质Mg和Al,其中单质Al使储氢材料放氢活化能降低,用Kissinger方程计算出球磨储氢和再吸氢材料的放氢一级表观活化能分别为107.3kJ/mol和67.1kJ/mol.  相似文献   

9.
H2气氛下用反应球磨法制备了镁碳复合储氢材料65Mg35C,在连续操作的固定床反应装置上进行了对CS2的加氢反应,研究了温度对加氢反应的影响。结果表明,材料具有较好的放氢性能,起始放氢温度为267.8℃,储氢密度高达4.95wt.%;加氢反应中生成了H2S和MgS,且反应温度越高,MgS的生成量越多,而氢转化率只有当材料的放氢速率与CS2的加氢速率相匹配时才能达到最大值;材料的放氢反应与CS2的加氢反应存在耦合效应,在一定温度范围内,这种耦合效应既可降低材料的放氢温度,又可提高材料在该温度下的放氢量。  相似文献   

10.
以Mg、烟煤和碳化无烟煤为原料,经H2反应球磨、热处理制备了烟煤粘结的纳米镁基储氢材料,研究了储氢材料结构及吸放氢性能,并计算了材料的吸氢动力学参数。结果表明,在600℃热处理时材料中的Mg容易与煤中的C发生反应生成Mg2C3;添加15%(质量分数)烟煤、经500℃热处理能有效粘结纳米Mg颗粒,且未见Mg2C3生成。储氢材料的吸氢速率随温度升高而增大,在2MPaH2下吸氢量在350℃达到最大值,约3.77%(质量分数),在400℃时吸氢量略有下降。根据Arrhenius公式,得出储氢材料在300~350℃下吸氢的一级反应表观活化能为56.6kJ/molH2。用TPD测定了储氢材料的放氢温度,表明材料在250℃开始放氢,388℃时达到放氢高峰。储氢材料中的C可结合少量H,该类H在加热时会以CH4等烃的形式释放出来。  相似文献   

11.
镁基复合材料(Mg-Ni-MO)的储氢性能   总被引:9,自引:0,他引:9  
在充氢气条件下,用机械球磨的方法合成了(RMA)镁基纳米复合材料Mg-3Ni-2MO(质量分数,%)(MO-过渡金属氧化合:Cr2O3,MnO2,V2O5,NiO,ZnO)。研究了材料的吸氢和放氢性能,在吸放氢过程中温度的变化规律,特别是在吸氢过程中产生的引燃现象。研究了材料的组成和球磨时间对吸放氢性能的影响。结果表明,含有过渡金属氧化物的镁基纳米复合物都具有较好的吸放氢动力学性能和较低的放氢温度。  相似文献   

12.
Magnesium–nickel alloys with nickel concentrations from 0 to 60 at% were prepared by three methods: inert gas condensation of sputtered nanocrystalline powder, cosputtering of amorphous thin films and ball milling. Of the three methods, ball milling yields the best hydrogen storage properties in terms of hydrogen capacity, hydriding/dehydriding rates, and activation requirements. In addition, these characteristics are achieved in magnesium with only very small nickel concentrations, on the order of a few atomic per cent. This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

13.
The hydriding and dehydriding properties of the tetrahydrofuran (THF) treated magnesium, along with its electronic energy states, crystalline structure and micro morphology have been investigated. The THF treated magnesium absorbs 6.3 wt% hydrogen at 723 K and 3.5 MPa. After hydrogenation, in addition to the expected hydride MgH2, a new less-stable hydride phase appears at 673 K, but not at a lower temperature. Desorption produces 5.5 wt% hydrogen at 723 K against a back-pressure of 1.3 Pa after 20 cycles of hydriding–dehydriding. The THF treatment improves the kinetics of hydrogen absorption and desorption. The THF treated Mg exhibited reasonable reaction rates with hydrogen at 623 K. XPS (X-ray Photo-electron Spectroscopy) studies show that THF treatment causes the electronic energy state of the magnesium atoms to shift, but the XRD (X-Ray Diffractometer) studies show the crystal structure remains unchanged. It is believed that the chemical state of magnesium surface is activated by THF treatment in favor of hydrogen absorption and desorption. Metallographic observation of the magnesium hydrides reveals some interesting features during hydrogenation.  相似文献   

14.
《Materials Research Bulletin》2006,41(6):1118-1126
Of all the materials presently being investigated to safely store high volumes of hydrogen for mobile applications; magnesium remains the most attractive. Magnesium is a light, low cost metal with high capacity for hydrogen storage but its (de)hydriding kinetics have to be improved for practical applications. Recently, hydrogen kinetics in magnesium have been significantly improved by mechanically milling magnesium hydride with catalyst transition metals or metal oxides. Here, we report that similar improvements can be achieved without using a catalyst. Our results demonstrate that magnesium hydride milled with magnesium oxide exhibits dehydriding and hydriding kinetics as fast as those obtained with catalyst transition metals or metal oxides.  相似文献   

15.
Mg/MmNi5—x(CoAlMn)x复合储氢合金的机械合金化制备   总被引:4,自引:1,他引:3  
朱文辉  罗堪昌 《功能材料》1999,30(3):271-273
用高能球磨法制备了Mg/MmNi5-x(CoAlMn)x纳米晶复合储氢材料,通过对不同成分和球磨条件所得到的样品的组织结构进行X射线衍射,扫描电镜,能谱分析,获得了球磨参数对所制备的复合储氢合金组织结构的影响规律及所得组织的特点,结果表明,经过一定时间的球磨后的Mg/MmNi5-x(CoAlMn)x形成团粒组织,根据X射线衍射的结果估算了不同球磨条件及成分的复粉中的各相的晶粒尺寸其变化。  相似文献   

16.
用X射线衍射方法(XRD)研究了Mg3Pr合金吸放氢前后的结构变化。Mg3Pr合金在吸/放氢过程中的压力.组成.等温曲线(PcI)和吸氢动力学曲线表明合金能在室温下吸氢,并且具有良好的吸氢动力学特性,能在4min之内达到饱和吸氢量的90%;其最大吸氢量分别为2.57%(质量分数)。Mg3Pr合金的吸氢动力学曲线可用Avrami-Erofeev方程拟合,说明吸氢过程符合形核长大机制。同时,也计算了Mg3Pr-H氢化反应的熵和焓。  相似文献   

17.
用煤基碳作为助磨剂,将镁在氮气中进行反应球磨制得储氮材料,然后利用储氮材料在一定温度下受热时释放出的氮使噻吩发生加氢反应生成H2S.结果表明,储氮材料在低于差示扫描童热分析仪测定的初始放氢温度下就能使噻吩加氮生成HZS,在适宜温度下储氮材料的放氮与噻吩的加氮相匹配时可生成较多的H2S;反应后储氮材料中的MgH2释放出氮...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号