首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The possibility of using acridine yellow G (AYG) as solar photocatalyst for wastewater treatment has been examined in this paper. A phenolic compound, namely ferulic acid, has been employed as target pollutant. The effect of pH, concentration of the substrate and photocatalyst has been investigated. Control of pH is critical in the process, as rate constants obtained at pH 3 (k = 0.020 min−1) were one order of magnitude higher than in basic media (k = 0.002 min−1 at pH 9), due to differences in the absorption spectrum in the UVA–vis region. Under acidic conditions, 80% removal of the substrate was achieved after 3 h irradiation, although TOC decrease was moderate (around 20%). Nevertheless important detoxification of the solution was measured, and the remaining organic matter showed an enhanced biodegradability. For this reason, a combination of AYG-driven solar photocatalysis with biological treatment seems a good approach to deal with these effluents. Experimental data are consistent with an electron transfer mechanism between the excited photocatalyst and the substrate: involvement of hydroxyl radicals can be ruled out, and photophysical measurements indicate a quenching of the fluorescence of AYG in the presence of ferulic acid. The rate constant for this process was obtained from the Stern–Volmer equation (kq = 4.4 × 109 M−1 s−1). Finally, based on the Rehm–Weller equation, a ΔG = −22.8 kcal/mol was calculated, indicating that the process is thermodynamically favourable.  相似文献   

2.
Paul Chin  David F. Ollis   《Catalysis Today》2007,123(1-4):177-188
The air–solid photocatalytic degradation of organic dye films Acid Blue 9 (AB9) and Reactive Black 5 (RBk5) is studied on Pilkington Activ™ glass. The Activ™ glass comprises of a colorless TiO2 layer deposited on clear glass. The Activ™ glass is characterized using atomic force microscopy (AFM) and X-ray diffraction (XRD). Using AFM, the TiO2 average agglomerate particle size is 95 nm, with an apparent TiO2 thickness of 12 nm. The XRD results indicate the anatase phase of TiO2, with a calculated crystallite size of 18 nm.

Dyes AB9 and RBk5 are deposited in a liquid film and dried on the Activ™ glass to test for photodecolorization in air, using eight UVA blacklight-blue fluorescent lamps with an average UVA irradiance of 1.4 mW/cm2. A novel horizontal coat method is used for dye deposition, minimizing the amount of solution used while forming a fairly uniform dye layer. About 35–75 monolayers of dye are placed on the Activ™ glass, with a covered area of 7–10 cm2. Dye degradation is observed visually and via UV–vis spectroscopy.

The kinetics of photodecolorization satisfactorily fit a two-step series reaction model, indicating that the dye degrades to a single colored intermediate compound before reaching its final colorless product(s). Each reaction step follows a simple irreversible first-order reaction rate form. The average k1 is 0.017 and 0.021 min−1 for AB9 and RBk5, respectively, and the corresponding average k2 is 2.0 × 10−3 and 1.5 × 10−3 min−1. Variable light intensity experiments reveal a p = 0.44 ± 0.02 exponent dependency of initial decolorization rate on the UV irradiance. Solar experiments are conducted outdoors with an average temperature, water vapor density, and UVA irradiance of 30.8 °C, 6.4 g water/m3 dry air, and 1.5 mW/cm2, respectively. For AB9, the average solar k1 is 0.041 min−1 and k2 is 5.7 × 10−3 min−1.  相似文献   


3.
The photocatalytic decolorization of adsorbed organic dyes (Acid Blue 9, Acid Orange 7, Reactive Black 5 and Reactive Blue 19) in air was examined, applicable to self-cleaning surfaces and catalyst characterization. Dye-coated Degussa P25 titanium dioxide (TiO2) and dye-coated photo-inert aluminum oxide (Al2O3) particles, both of sub-monolayer initial dye coverage, were illuminated with 1.3 mW cm−2 of near-UV light. Visual evidence of color removal is reported with photographic images. Two methods, Indirect and Direct Analysis, were employed to quantitatively examine the decolorization kinetics of dyes using UV–visible transmission and diffuse reflectance spectroscopy, respectively. A decrease in dye concentration with time was observed with near-UV illumination of dye-coated TiO2 powders for all dyes. Dyes did not photodegrade significantly on photo-inert Al2O3.

UV–visible spectroscopy data was used to model the kinetics of the photocatalytic degradation. Two first-order reactions in series provided the most convincing rate form for the photodegradation of dyes adsorbed to TiO2, with a first step the conversion of colored dye to colored intermediate, and the second the conversion to colorless product(s). The first rate constant was of similar magnitude for all dyes, averaging k1 = 0.13 min−1. Similarly, for the second, k2 = 0.0014 min−1.  相似文献   


4.
The hydrodynamic characteristics in aqueous solution at ionic strength I=0.2  of carboxymethylchitins of different degrees of chemical substitution have been determined. Experimental values varied over the following ranges: the translational diffusion coefficient (at 25.0°C), 1.1<107×D<2.9 cm2 s−1; the sedimentation coefficient, 2.4<s<5.0 S; the Gralen coefficient (sedimentation concentration-dependence parameter), 130<ks<680 mL g−1; the intrinsic viscosity, 130<[η]<550 mL g−1. Combination of s with D using the Svedberg equation yielded ‘sedimentation–diffusion' molecular weights in the range 40 000<M<240 000 g mol−1. The corresponding Mark–Houwink–Kuhn–Sakurada (MHKS) relationships between the molecular weight and s, D and [η] were: [η]=5.58×10−3 M0.94; D=1.87×10−4 M−0.60; s=4.10×10−15 M0.39. The equilibrium rigidity and hydrodynamic diameter of the carboxymethylchitin polymer chain is also investigated on the basis of wormlike coil theory without excluded volume effects. The significance of the Gralen ks values for these substances is discussed.  相似文献   

5.
We report the kinetic parameters for the water–gas shift (WGS) reaction on Pt catalysts supported on ceria and alumina under fuel reformer conditions for fuel cell applications (6.8% CO, 8.5% CO2, 22% H2O, 37.3% H2, and 25.4% Ar) at a total pressure of 1 atm and in the temperature range of 180–345 °C. When ceria was used as a support, the turnover rate (TOR) for WGS was 30 times that on alumina supported Pt catalysts. The overall WGS reaction rate (r) on Pt/alumina catalysts as a function of the forward rate (rf) was found to be: r = rf(1 − β), where rf = kf[CO]0.1[H2O]1.0[CO2]−0.1[H2]−0.5, kf is the forward rate constant, β = ([CO2][H2])/(Keq[CO][H2O]) is the approach to equilibrium, and Keq is the equilibrium constant for the WGS reaction. The negative apparent reaction orders indicate inhibition of the forward rate by CO2 and H2. The surface is saturated with CO on Pt under reaction conditions as confirmed by diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS). The small positive apparent reaction order for CO, in concert with the negative order for H2 and the high CO coverage is explained by a decrease in the heat of adsorption as the CO coverage increases. Kinetic models based on redox-type mechanisms can explain the observed reaction kinetics and can qualitatively predict the changes in CO coverage observed in the DRIFTS study.  相似文献   

6.
For the apparent kinetics of the carbonation reaction of calcium oxide by carbon dioxide, as a kind of noncatalytic gas–solid reaction, a model equation has been proposed as follows: X=kbt/(b+t), where X is the conversion of CaO; k, a kinetic rate constant (time−1); b, a constant (time) equivalent to the time taken to attain half the ultimate conversion of CaO, and t, the time. As a result of analyses for some literature-reported data of CaO-carbonation conversion, it has been found that the rate of the carbonation can be well represented by dX/dt=k(1−X/Xu)2, where Xu is the ultimate conversion of CaO, which is given by the product of two parametric constants, k and b. The constants k and b in the two rate control regimes of CaO-carbonation, chemical reaction control and diffusion control, have been determined as functions of temperature, respectively. The activation energy in the carbonation of surface CaO with CO2 is estimated to about 72 kJ/mol regardless of the sources of CaO, however, that in the diffusion control regime appears differently as 102.5 (mesoporous CaO) or 189.3 kJ/mol (commercial-available CaO), possibly due to the morphological differences of the two CaO samples. From a practical point of view, the simple model equation proposed in this study deserves attention in that the CaO-carbonation behavior at working temperatures higher than 700 °C could be closely predicted.  相似文献   

7.
Adsorption of metals by clay minerals is a complex process controlled by a number of environmental variables. The present work investigates the removal of Cu(II) ions from an aqueous solution by kaolinite, montmorillonite, and their poly(oxo zirconium) and tetrabutylammonium derivatives. The entry of ZrO and TBA into the layers of both kaolinite and montmorillonite was confirmed by XRD measurement. The specific surface areas of kaolinite, ZrO-kaolinite, TBA-kaolinite, montmorillonite, ZrO-montmorillonite, TBA-montmorillonite were 3.8, 13.4, 14.0, 19.8, 35.8 and 42.2 m2/g, respectively. The cation exchange capacity (CEC) was measured as 11.3, 10.2, 3.9, 153.0, 73.2 and 47.6 meq/100 g for kaolinite, ZrO-kaolinite, TBA-kaolinite, montmorillonite, ZrO-montmorillonite, TBA-montmorillonite, respectively. Adsorption increased with pH till Cu(II) ions became insoluble in alkaline medium. The kinetics of the interactions suggests that the interactions could be best represented by a mechanism based on second order kinetics (k2 = 7.7 × 10−2 to 15.4 × 10−2 g mg−1 min−1). The adsorption followed Langmuir isotherm model with monolayer adsorption capacity of 3.0–28.8 mg g−1. The process was endothermic with ΔH in the range 29.2–50.7 kJ mol−1 accompanied by increase in entropy and decrease in Gibbs energy. The results have shown that kaolinite, montmorillonite and their poly(oxo zirconium) and tetrabutyl-ammonium derivatives could be used as adsorbents for separation of Cu(II) from aqueous solution.  相似文献   

8.
The divalent selective electrode together with high precision solid state, digital pH -mv -meter makes broader application of potentiometry in physical and inorganic chemistry a certainty. The above set-up is used to determine the stoichiometric constants, K, for Ca and Mg ions association with formates, acetates, propionates and butyrates at 25°, 35° and 45°C in aqueous media. The K-values were converted to infinite dilution KA values were found to be 8.4 LM−1, 10.4 LM−1, 19.1 LM−1 and 19.3 LM−1 for calcium salts of formate, acetate, propionate and butyrate respectively. Also KA values for Mg salts of formate, acetate, propionate and butyrate were found to be 7.8 LM−1, 9.5 LM−1, 13.1 LM−1 and 13.1 LM−1 respectively. Other thermodynamic parameters such as ΔG°, ΔH° and ΔS° are also obtained from the variation of KA with temperature for each salt. The data are interpreted relative to each other on basis of pKa of the corresponding organic acid. Their temperature behaviour is similar to those salts derived from strong acids such as sulphates, rather than weak acids.  相似文献   

9.
Polymeric catalysts to be applied in the Diels–Alder cycloaddition of hexachlorocyclopentadiene and maleic acid have been prepared via molecular imprinting with template molecules immobilized on silica particles. These enzyme mimicking polymers exhibit specific catalytic effects compared to non-imprinted control polymers or polymer-free solutions. It could be demonstrated that the activity of the molecularly imprinted material rises when increasing the temperature. By this means, the reduction of the activation energy (as expected for catalysts) from 63 to 55 kJ mol−1 could be observed. Furthermore, the reaction was characterized based on the Michaelis–Menten model. For the diene compound a Michaelis constant of KM=5.8 mmol l−1 and an effective reaction rate of rmax,eff=0.4 μmol l−1 s−1, leading to a reaction rate constant keff=1.1×10−3 s−1, were determined.  相似文献   

10.
Mono- and multi-metallic (bi- and tri-) Pt, Pd and Rh supported on cerium-promoted alumina (La Roche, SAS-1/16) catalysts were tested for activity as TWC, both fresh [G.C. Koltsakis, and A.M. Stamatelos, Progr. Energy Combust. Sci. 23 (1997) 1] and after accelerated aging. Aging consisted of a treatment at 900°C for 5 h during which an oxidizing (2.5% O2, 10% H2O, in N2) and a reducing (5.0% CO, 10% H2O, in N2) feedstream were cycled at 0.017 Hz through the catalyst. Activity tests were carried out by increasing temperature from 100 to 600°C at 3°C min−1, while two oxidizing and reducing (±0.5 A/F) feedstreams were alternately (1 Hz) fed through the reactor at 125 000 h−1 (STP). Conversion was continuously analyzed. Light-off temperature, T50, conversion at 500°C (normal running temperature), X500, and the stoichiometric window (A/F from 14.13 to 15.13) for stationary feedstreams, were determined.  相似文献   

11.
The catalytic effect of a heteropolyacid, H4SiW12O40, on nitrobenzene (20 and 30 μM) oxidation in supercritical water was investigated. A capillary flow-through reactor was operated at varying temperatures (T=400–500 °C; P=30.7 MPa) and H4SiW12O40 concentrations (3.5–34.8 μM) in an attempt to establish global power-law rate expressions for homogenous H4SiW12O40-catalyzed and uncatalyzed supercritical water oxidation. Oxidation pathways and reaction mechanisms were further examined via primary oxidation product identification and the addition of various hydroxyl radical scavengers (2-propanol, acetone, acetone-d6, bromide and iodide) to the reaction medium. Under our experimental conditions, nitrobenzene degradation rates were significantly enhanced in the presence of H4SiW12O40. The major differences in temperature dependence observed between catalyzed and uncatalyzed nitrobenzene oxidation kinetics strongly suggest that the reaction path of H4SiW12O40-catalyzed supercritical water oxidation (average activation Ea=218 kJ/mol; k=0.015–0.806 s−1 energy for T=440–500 °C; Ea=134 kJ/mol for the temperature range T=470–490 °C) apparently differs from that of uncatalyzed supercritical water oxidation (Ea=212 kJ/mol; k=0.37–6.6 μM s−1). Similar primary oxidation products (i.e. phenol and 2-, 3-, and 4-nitrophenol) were identified for both treatment systems. H4SiW12O40-catalyzed homogenous nitrobenzene oxidation kinetics was not sensitive to the presence of OH√ scavengers.  相似文献   

12.
The use of hydrogen peroxide (H2O2) for improved photocatalytic degradation of phenol in aqueous suspension of commercial TiO2 powders (Degussa P-25) was investigated. Photodegradation was compared using direct photolysis (UV alone), H2O2/UV, TiO2/UV, and H2O2/TiO2/UV processes in a batch reactor with high-pressure mercury lamp irradiation. The effects of operating parameters such as catalyst dosage, light intensity, pH of the solution, the initial phenol, and H2O2 concentrations on photodegradation process were examined. It was shown that photodegradation using H2O2/TiO2/UV process was much more effective than using either H2O2/UV or TiO2/UV process. The effect of the initial phenol concentration on TOC removal was also studied, demonstrating that more than 8 h was required to completely mineralize phenol into water and carbon dioxide. For all the four oxidation processes studied, photodegradation followed the first-order kinetics. The apparent rate constants with 400-W UV ranged from 5.0 × 10−4 min−1 by direct photolysis to 1.4 × 10−2 min−1 using H2O2/TiO2/UV process. The role of H2O2 on such enhanced photodegradation of phenol in aqueous solution was finally discussed.  相似文献   

13.
Microwave dielectric properties of (Zn1/3Nb2/3)0.40(Ti1−xSnx)0.60O2 ceramics were investigated as a function of SnO2 content (0.15 ≤ x ≤ 0.30). A single phase with tetragonal rutile structure was obtained through the entire composition. The unit-cell volume of the specimens was increased with SnO2 content, due to the larger ionic radius of Sn4+ (0.69 Å) than that of Ti4+ (0.605 Å) for octahedral site. Dielectric constant (K) of the sintered specimens was affected by the dielectric polarizability. Quality factor (Qf) was dependent on the degree of reduction of Ti4+ ion. With an increase of SnO2 content, the temperature coefficient of resonant frequency (TCF) of the specimens decreased due to the decrease of the octahedral distortion of rutile structure.  相似文献   

14.
Dependence of microwave dielectric properties on the crystal structure of (Zn1/3B2/35+)xTi1 − xO2 (B5+ = Nb, Ta) ceramics was investigated as a function of Zn1/3B2/35+O2 (B5+ = Nb, Ta) content (0.4 ≤ x ≤ 0.7). Dielectric constant (K) and the temperature coefficient of resonant frequency (TCF) of sintered specimens were strongly dependent on the structural characteristics of oxygen octahedra in rutile structure. Cation rattling and the distortion of oxygen octahedra were dependent on the bond length ratio of apical (dapical)/equatorial (dequatorial) of oxygen octahedra. The quality factor (Qf) was dependent on the reduction of Ti ion as well as the microstructure of the sintered specimens.  相似文献   

15.
The electrosorption properties of p-norborn-2-yl phenolate ions in alkaline solutions were investigated by ac polarographic and electrocapillary measurements.

Two adsorption regions were found. At low bulk surfactant concentrations the adsorption at the positively charged electrode (−0.2 E −0.6 V) is predominant while at higher surfactant concentrations the adsorption at the negatively charged electrode (−0.6 E −1.0 V) is more pronounced. At E = −0.40 V the adsorption parameters were determined (a ≈ 2; ΔG°A = −32.5 ± 1 kJ mol−1. Between −0.6 E −1.0 V one potential of maximum adsorption for all concentrations does not exist and therefore the adsorption parameters could not be calculated.

At E = −0.40 V progressive two-dimensional nucleation with a nucleation order of 3 was observed which corresponds well with the high attraction constant.

The electrode reaction S2O2−8 + 2e → 2 SO2−4 is inhibited by norborn-2-yl phenolate ions in the potential range −0.2 E −0.6 V. In the second potential range of capacity decrease the electrode process is much less retarded. At E = −0.40 V, in a similar manner as described for neutral molecules, a linear dependence of the log ks (ks apparent rate constant) on ln cA and π (π = surface film pressure), respectively, has been found.  相似文献   


16.
Layered Li[Ni(1−x)/3Mn(1−x)/3Co(1−x)/3Crx]O2 materials with x = 0, 0.01, 0.02, 0.03, 0.05 are prepared by a solid-state pyrolysis method. The oxide compounds were calcined with various Cr-doped contents, which result in greater difference in morphological (shape, particle size and specific surface area) and the electrochemical (first charge profile, reversible capacity and rate capability) differences. The Li[Ni(1−x)/3Mn(1−x)/3Co(1−x)/3Crx]O2 powders were characterized by means of X-ray diffraction (XRD), charge/discharge cycling, cyclic voltammetry, and SEM. XRD experiment revealed that the Li[Ni(1−x)/3Mn(1−x)/3Co(1−x)/3Crx]O2 (x = 0, 0.01, 0.02, 0.03, 0.05) were crystallized to well layered -NaFeO2 structure. The first specific discharge capacity and coulombic efficiency of the electrode of Cr-doped materials were higher than that of pristine material. When x = 0.02, the sample showed the highest first discharge capacity of 241.9 mAh g−1 at a current density of 30 mA g−1 in the voltage range 2.3–4.6 V, and the Cr-doped samples exhibited higher discharge capacity and better cycleability under medium and high current densities at room temperature.  相似文献   

17.
Rate data have been obtained for CO hydrogenation on a well-characterized 11.7% Co/TiO2 catalyst in a differential fixed bed reactor at 20 atm, 180–240°C, and 5% conversion over a range of reactant partial pressures. The resulting kinetic parameters can be used to model precisely and accurately the kinetics of this reaction within this range of conditions. Turnover frequencies and rate constants determined from this study are in very good to excellent agreement with those obtained in previous studies of other cobalt catalysts, when the data are normalized to the same conditions of temperature and partial pressures of the reactants. Based on this comparison CO conversion and the partial pressure of product water apparently have little effect on specific rate per catalytic site. The data of this study are fitted fairly well by a simple power law expression of the form −rCO=kPH20.74PCO−0.24, where k=5.1×10−3 s−1 at 200°C, P=10 atm, and H2/CO=2/1; however, they are best fitted by a simple Langmuir–Hinshelwood (LH) rate form −rCO=aPH20.74PCO/(1+bPCO)2 similar to that proposed by Yates and Satterfield.  相似文献   

18.
Nitrous and nitric acids form in aqueous solutions exposed to a gliding arc discharge burning in humid air. The anions interfere when the concentration of particular solutes such as pollutants must be determined. In particular they falsify the COD measurements and spectral investigations and thus the efficiency of the plasma treatment in pollutant abatement. The nitrite anions must be thus removed, which require specific reagents. The influence of parameters such as solution pH and [reducers]/[NO2] ratio on the reduction reaction was evaluated. The reduction of nitrite into N2 either by sulfamic acid or sodium azide is a first-order pH-dependant reaction with regard to nitrite and reducers (k1 = 2.93 × 10−1 m3 kmol−1 s−1; k2 = 6.21 × 10−1 m3 kmol−1 s−1, respectively). Sodium azide is thus more reactive than sulfamic acid.  相似文献   

19.
Effect of electrical ageing (EA) on the field emission parameters of thin multiwall carbon nanotube composite (t-MWCNTs-composite) was studied. Initially, t-MWCNTs were mixed with -terpineol and ethyl cellulose and subjected to three roll milling process to obtain t-MWCNTs-composite. Following this, the composite was screen printed on a conducting substrate, annealed for 10 min and employed to the electrical ageing process for a period of 6 h. The ageing, on each cathode layer, was repeated for five times and JE characteristics have been collected before and after each ageing attempt. The analysis revealed that, the magnitude of threshold turn-on-field gradually increased from its virgin value of 1.223 to 1.968 V µm− 1 and corresponding mean field enhancement factor, γm, gradually decreased from 2700 ± 210 to 1940 ± 30 with a sequential increase in the ageing attempts. The degradation rate, δJt, estimated for untreated and EA samples, indicated that the magnitude of δJt reached to an equilibrium value of ~ 0.785 μA cm− 2 min− 1, which shows a stable emission state of the emitters. To investigate the effect of EA on the physical state of the emitters, a few virgin and all EA samples were subjected to scanning electron microscopy, micro Raman spectroscopy and X-ray photoelectron spectroscopy. The details of the analysis are presented.  相似文献   

20.
In this paper, the synthesis of AgBr/TiO2 catalyst and the photocatalytic activity in water under simulated sunlight irradiation were studied. The influence of AgBr content in catalyst and the incident light intensity on the degradation of methyl orange (MO) was investigated. It was found that the initial reaction rate constant was dependent on the relative levels of AgBr content and incident light intensity, ranging between 0.008 min−1 and 0.023 min−1. At higher levels of AgBr content (>9 wt%), MO degradation was exclusively dependent on the incident light intensity, which implied that the excessive AgBr in catalyst had negligible effect on catalyst activity. However, at lower AgBr contents, the reaction rate increased with the increase of incident light intensity, and eventually reached a plateau level, indicating that the degradation of MO was limited by AgBr content. The results from powder X-ray diffraction (XRD) analysis showed that more than 80% of AgBr remained intact after 14 h of irradiation, although metallic silver was also detected.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号