首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The objective of the present study was to determine the effects of Lactobacillus acidophilus on the sensory attributes, ripening time, and composition of Turkish white cheese and to investigate the survival of L. acidophilus during ripening of the cheese stored in vacuum or in brine. Two types of white cheeses, traditional cheese (control, made with Lactococcus lactis ssp. lactis and Lactococcus lactis ssp. cremoris) and probiotic cheese (made with Lactococcus lactis ssp. lactis, Lactococcus lactis ssp. cremoris and L. acidophilus 593 N), were produced and ripened in vacuum pack or in brine at 4°C for 90 days. Cheese samples were assessed for microbiological and compositional properties, proteolysis, and sensory evaluation at different ripening stages. On ripening in vacuum pack, L. acidophilus survived to numbers >107 cfu g−1, which is necessary for positive effects on health. Protein, dry matter, salt content, and percentage of lactic acid in the vacuum-packed and brine-salted probiotic cheeses were significantly different. Also, the lactic acid content of probiotic cheeses was slightly higher than that of the controls for both vacuum- and brine-packed cheeses. Vacuum-packed probiotic cheese had the highest levels of proteolysis and the highest sensory scores of all cheeses. Consequently, L. acidophilus could be used for the manufacturing of probiotic white cheese to shorten ripening time and vacuum packaging is the preferred storage format.  相似文献   

2.
The aim of this study was to evaluate the effects of the application of beeswax coating on the microbiological, physicochemical and sensory properties of Kashar cheese during ripening (120 day). Kashar cheeses were coated with two different thickness of beeswax (single‐layer coating, BW1, and double‐layer coating, BW2). For comparison, vacuum packaged (VP) and without packaging material (control) were also studied. Generally, no differences were found in total aerobic mesophilic bacteria, LAB on M‐17 agar, coliform bacteria and S. aureus counts among cheeses. Microbiological analyses also showed the beeswax‐coated cheeses presented a decrease of 2.5 logarithmic units on mould counts compared to control at 120th day. The control cheese had significantly (P < 0.05) higher dry matter, fat and protein contents, followed by BW1. However, the coating reduced formation of a thick crust layer by delaying moisture loss. At the end of 120‐day storage period, no significant differences in pH and acidity values were observed among the cheeses studied. Compared to other cheeses, control and BW1 cheeses had higher levels of WSN and ripening index in the end of storage. In the result of sensory analysis, while cheese BW1 and control were more preferred by the panellists, cheese VP received the lowest scores.  相似文献   

3.
The composition, biochemical and sensory parameters of control cheese (without herbs) and four herby cheeses at 0.5, 1, 2 and 3% herb levels (mendi, Chaerophyllum sp.) ripened at 4 ± 1°C for 90 days were compared. As herb levels increased from 0.5 to 3%, dry matter and pH value decreased significantly. However, dry matter of all cheeses showed similar changes during ripening. The salt content of samples changed from 3.44 to 5.47% during ripening. There was a tendency toward slightly higher titratable acidity in cheeses with more added herbs. Ripening index, trichloroacetic acid-soluble nitrogen/total nitrogen, phosphotungstic acid-soluble nitrogen/total nitrogen, and lipolysis values of the cheese samples were affected by adding herbs and by ripening time. The most acceptable sensory score was obtained with 1% added herbs.  相似文献   

4.
In this study, four different types of mould‐ripened Civil cheese were manufactured. A defined (nontoxigenic) strain of a Penicillium roqueforti (SC 509) was used as secondary starter for the manufacture of mould‐ripened Civil cheese with and without addition of the whey cheese Lor; in parallel, secondary starter‐free counterparts were manufactured. A total of 83 compounds were identified. Ketones, alcohols and esters were the principal classes of volatile components. Principal component analysis of the headspace volatiles grouped cheeses by age and type. P. roqueforti inoculated cheese was clearly separated from the other cheeses at 180 days of ripening, and these cheeses were characterised with high levels of ketones (e.g., 2‐butanone, 2‐heptanone). Differences in the panel scores between the cheese samples were not significant during the first stage of ripening (up to 60 days); as ripening proceeded, these differences were become evident and P. roqueforti inoculated cheeses received higher scores than others. Addition of Lor in the manufacture of mould‐ripened Civil cheese caused lower points by the sensory panel, and the cheese inoculated with P. roqueforti and Lor‐free was the best type of mould‐ripened Civil cheese. The results showed that the use of P. roqueforti in the manufacture of mould‐ripened Civil cheese has significant impact on the volatile profiles and sensory attributes.  相似文献   

5.
São João cheeses with varying curd dry salting treatments were made with decreasing levels of salt (sodium chloride): 4 (control), 3, 2 and 1% (w/w), along with the salt‐free version. The cheeses were ripened at 11 °C over a 40‐day period, and the effect of lowering salt on the physicochemical, microbiological and sensory properties of the cheese was studied. Reduced salt resulted in a concomitant moisture decrease with protein increase, ash and sodium reduction among experimental cheeses at the same ripening day, but there were no significant differences in pH, acidity and fat, or in the microbiological quality. Triangle tests indicated perceptible differences between test and control cheeses at the level of 2% NaCl (w/w) or less, but not with the cheese salted with 3 g NaCl/100 g. Considering the sensory, the physicochemical and the microbiological results, the cheese formulated at 3% NaCl (w/w) (presenting a reduction of 25% in salt) is feasible on an industrial scale, being indistinguishable by the regular consumer.  相似文献   

6.
Four different types of mould‐ripened Civil cheese were manufactured. A defined (nontoxigenic) strain of a Penicillium roqueforti (SC 509) was used as the secondary starter with and without addition of the whey cheese (Lor); in parallel, secondary starter‐free counterparts were manufactured. Chemical composition, microbiology and proteolysis were studied during the ripening. The incorporation of whey cheese in the manufacture of mould‐ripened Civil cheese altered the gross composition and adversely affected proteolysis in the cheeses. The inoculated P. roqueforti moulds appeared to grow slowly on those cheeses, and little proteolysis was evident in all cheese treatments during the first 90 days of ripening. However, sharp increases in the soluble nitrogen fractions were observed in all cheeses after 90 days. Microbiological analysis showed that the microbial counts in the cheeses were at high levels at the beginning of ripening, while their counts decreased approximately 1–2 log cfu/g towards the end of ripening.  相似文献   

7.
Kashar cheeses were manufactured using different coagulants (calf rennet, chymosin derived by fermentation and proteases from Rhizomucor miehei and Cryphonectria parasitica) and ripened for 90 days. Use of different coagulants did not influence the dry matter, fat, protein, salt, pH, titratable acidity, total free fatty acids and texture profile analyses. The levels of water‐soluble nitrogen, 12% trichloroacetic acid‐soluble nitrogen, and for 5% phosphotungstic acid‐soluble nitrogen, the sensory properties were significantly influenced by the use of different coagulants. β‐casein was more hydrolysed in the cheese manufactured using protease from Cryphonectria parasitica than the other cheeses during 90 d of ripening.  相似文献   

8.
The effects of packaging methods (nonvacuum and vacuum) on biogenic amines (cadaverine, putrescine, tyramine, tryptamine, phenylethylamine, and histamine) and organic acids (citric, lactic, formic, acetic, propionic, and butyric) during storage for 180 d at 4°C were investigated in Kashar cheese. Dry matter, titratable acidity, total nitrogen, water-soluble nitrogen, trichloroacetic acid-soluble nitrogen, phosphotungstic acid-soluble nitrogen, free amino group (proteolysis), pH, fat, and acid degree value were also determined. Storage period had a significant effect on all of the biogenic amines. When compared with vacuum packaging, nonvacuum packaging resulted in no large differences among the amounts of biogenic amines. Vacuum-packaged cheeses had more lactic, formic, acetic, and butyric acids than did cheeses packaged without vacuum. Water-soluble nitrogen, trichloroacetic acid-soluble nitrogen, phosphotungstic acid-soluble nitrogen, proteolysis, pH, and acid degree values of the cheese samples increased continuously until the end of the ripening in all the samples. No significant change was observed in total nitrogen, dry matter, or fat content within the ripening period, whereas titratable acidity values changed significantly in vacuum-packaged cheese and decreased slightly in the non-vacuum-packaged cheeses. The results of this study showed that storage period and packaging method had significant effects on the quality of Kashar cheese.  相似文献   

9.
In this study, 2 different starter culture combinations were prepared for cheesemaking. Starter culture combinations were formed from 8 strains of lactic acid bacteria. They were identified as Lactococcus lactis ssp. lactis (2 strains), Lactobacillus plantarum (5 strains), and Lactobacillus paraplantarum (1 strain) by amplified fragment length polymorphism analysis. The effects of these combinations on the physicochemical and microbiological properties of Beyaz cheeses were investigated. These cheeses were compared with Beyaz cheeses that were produced with a commercial starter culture containing Lc. lactis ssp. lactis and Lc. lactis ssp. cremoris as control. All cheeses were ripened in brine at 4°C for 90 d. Dry matter, fat in dry matter, titratable acidity, pH, salt in dry matter, total N, water-soluble N, and ripening index were determined. Sodium dodecyl sulfate-PAGE patterns of cheeses showed that αS-casein and β-casein degraded slightly during the ripening period. Lactic acid bacteria, total mesophilic aerobic bacteria, yeast, molds, and coliforms were also counted. All analyses were repeated twice during d 7, 30, 60, and 90. The starter culture combinations were found to be significantly different from the control group in pH, salt content, and lactobacilli, lactococci, and total mesophilic aerobic bacteria counts, whereas the cheeses were similar in fat, dry matter content, and coliform, yeast, and mold counts. The sensory analysis of cheeses indicated that textural properties of control cheeses presented somewhat lower scores than those of the test groups. The panelists preferred the tastes of treatment cheeses, whereas cheeses with starter culture combinations and control cheeses had similar scores for appearance and flavor. These results indicated that both starter culture combinations are suitable for Beyaz cheese production.  相似文献   

10.
The effect of including artichoke silage in the rations of dairy ewes on milk characteristics and biochemical changes of ripened cheeses was evaluated. Four groups of lactating ewes were fed rations containing 0, 10, 20, or 30% artichoke silage on a dry matter basis. Bulk milk samples were collected 3 times during the feeding period, and semi-hard cheeses were manufactured and sampled during ripening. Milk composition and cheese yield were not affected by diet. Inclusion of 20 and 30% artichoke silage reduced the firmness of the curds at a level only detected by the Gelograph (Gelograph-NT, Gel-Instrumente, Thalwil, Switzerland) probe. Inclusion of artichoke silage in ewes’ diet decreased fat and total free fatty acids content of these cheeses and increased total free amino acids content. Despite the effect of diet on cheese ripening characteristics, the overall sensory scores for cheeses corresponding to artichoke silage diets were statistically higher than those for the control cheeses.  相似文献   

11.
White cheese samples were manufactured from bovine milk using three different commercial direct vat starter cultures (DVS-1, -2 and -3) and a lyophilized culture, and ripened at 4 ± 1°C for 90 days. The composition, titratable acidity and ripening indices of the cheese samples were determined on the 2nd, 30th, 60th and 90th days of ripening. The ratios of total solids, protein and fat were higher for cheeses manufactured using DVS-2 and lyophilized cultures but the titratable acidity in cheese produced using DVS-3 and lyophilized cultures was higher (P < 0.01). The mean value of the ripening indices of the cheese produced using the lyophilized culture was lower than the cheeses produced with added DVS cultures (P < 0.05). The total solids, ash, salt ratios, titratable acidity and ripening indices values increased for all types of white cheeses during ripening (P < 0.05).  相似文献   

12.
In this article, 15 randomly selected samples of Civil cheese, were purchased from different retail markets in the Erzurum province, Turkey and were investigated for some chemical and biochemical analyses. All cheese samples were analyzed for dry matter, fat, salt, ash, titrable acidity, total nitrogen, soluble nitrogen, ripening index, αs-and β-casein degradation, γ-casein, and peptides. Dry matter, fat, fat in dry matter, salt, salt in dry matter, ash, and acidity values in samples analyzed were found to be as found between 31.33 and 40.12 g/100 g cheese; 1.00 and 7.00 g/100 g cheese; 2.49 and 18.98 g/100 g cheese; 0.11 and 0.34 g/100 g cheese; 0.27 and 1.04 g/100 g cheese; 1.42 and 5.14 g/100 g cheese and, 0.63 and 2.16%, respectively. TN, WSN/TN, TCA-SN/TN, and PTA-SN/ TN values, expressed as TN%, were found between 3.01 and 5.57 g/100 g cheese, 4.25 and 8.80 g/100 g cheese, 3.23 and 6.12 g/100 g cheese, 1.03, and 5.53 g/100 g cheese in Civil cheese samples analyzed, respectively. SDS-PAGE showed that both αs-CN and β-CN ratios were not high compared with similar cheeses, and are not completely hydrolyzed in all Civil cheese samples. A broad range of values from chemical and biochemical analysis indicated that Civil cheeses collected from retail markets lacked standardization. Consequently, it was decided that Civil cheese samples do not undergo an excessive proteolysis.  相似文献   

13.
《Journal of dairy science》2019,102(6):5713-5725
To produce a wide variety of cheeses, it is necessary to control the ripening process. To do that, artisanal goat cheeses were ripened to evaluate the effects of temperature (10 and 14°C) and relative humidity (RH; 88 and 98%) on (1) 16 physicochemical characteristics throughout ripening and (2) 19 sensory characteristics at the end of ripening (d 12). Whatever the ripening time, the physicochemical characteristics were strongly dependent on the daily productions, which affected the sensory perception of the cheeses. Both physicochemical and sensory characteristics were strongly reliant on RH, whereas only a few of the characteristics were influenced by temperature changes. On d 12, whatever the ripening temperature, an RH increase from 88% to 98% modified many cheese characteristics (core pH, lactate consumption, underrind thickening, dry matter content, and hardness). As a result of these physicochemical properties, changes in perception were observed: the cheeses ripened under 88% RH were dry and hard compared with those ripened under 98% RH. An RH of 98% led to an acceleration of the ripening process, inducing a slightly ammonia and milky flavor and a sticky and creamy texture in the mouth. However, cheeses ripened under 14°C and 98% RH were also indicative of overripened cheeses: a temperature of 14°C induced an acceleration of the ripening process due to physicochemical modifications compared with a temperature of 10°C. Nevertheless, when the cheeses on d 0 were still very humid and soft, those ripened under 98% RH collapsed and were overripened with a liquid underrind. This study provides a means for achieving a better and more rational control of the ripening process in artisanal lactic goat cheeses.  相似文献   

14.
ABSTRACT: The proteolysis of β-casein during ripening of low-fat Fynbo cheese was studied using 1st-order kinetics to improve the knowledge of the p-casein hydrolysis in Fynbo cheeses salted with NaCl or NaCl/KCl and ripened at different temperatures. Effects of ripening temperature, partial replacement of NaCl by KCl during cheese salting, and total salt concentration were evaluated. Central and external zones from cheeses at 1, 5, 10, 20, 30, 60, and 90 ripening days were analyzed by polyacrylamide gel electrophoresis. No significant differences in the kinetic parameters were observed between cheeses salted with NaCl and those salted with a NaCl/KCl brine. Kinetic constants were significantly affected by region within cheese and ripening temperature. Kinetic constant values were in the range of 0.004/d to 0.018/d, and the activation energy of the reaction was approximately 19 kcal/gmol.  相似文献   

15.
The purpose of this research was to investigate an alternative way to manufacture Erzincan tulum cheese in order to shorten production time and improve food safety. By adding 0.5% starter culture ( Streptococcus salivarius ssp. thermophilus and Lactobacillus delbrueckii ssp. bulgaricus cultures at a 1 : 1 ratio) to pasteurized ewe's milk (65°C for 30 min), the required time for manufacturing Erzincan tulum cheese was shortened from the traditional 10–12 days to 2 days. The cheeses manufactured with the modified method were ripened in three different packaging materials: goatskin, plastic, and ceramic. Physicochemical, microbiological, and sensory properties of the Erzincan tulum cheese were obtained during the ripening period at intervals of 2, 30, 60, and 90 days, and compared with those properties of samples manufactured by the traditional method. Significant microbiological and physicochemical differences were found between the modified samples and the traditional samples ( P <  0.01). However, the modified samples and the traditional samples were statistically similar in sensory properties to the exception of the modified sample packaged in plastic.  相似文献   

16.
The aim of this study was to evaluate the milk properties and the yield and sensory properties of Cantal cheese made with milk from Holstein or Montbéliarde cows milked once or twice daily. Sixty-four grazing cows [32 Holstein (H) and 32 Montbéliarde (M) cows] in the declining phase of lactation (157 d in milk) were allocated to 1 of 2 equivalent groups milked once daily (ODM) or twice daily (TDM) for 7 wk. The full-fat raw milk collected during 24 h from the 4 groups of cows (M-TDM, M-ODM, H-TDM, and H-ODM) was pooled and processed into Cantal cheese 4 times during the last 4 wk of the experimental period. In all, 16 cheeses were made (2 milking frequencies × 2 breeds × 4 replicates) and analyzed after a ripening period of 15 and 28 wk. The results showed that for both breeds, the pooled milk content of fat, whey protein, casein, total protein, and phosphorus as well as rennet clotting time and curd firming time were significantly higher with ODM cows, whereas the casein-to-total protein ratio was lower, and lactose, urea, calcium, and free fatty acids contents of milk remained unchanged. The acidification and draining kinetics of the cheese as well as cheese yields and the chemical and rheological properties of the ripened cheese were not significantly modified by milking frequency. For both breeds, the cheeses derived from ODM cows had a slightly yellower coloration but the other sensory attributes, except for pepper odor, were not significantly affected by milking frequency, thereby demonstrating that ODM does not have an adverse effect on the sensory properties of Cantal cheese. Compared with that of Holstein cows, milk from Montbéliarde cows resulted in a higher cheese yield (+1.250 kg/100 kg of milk) and ripened cheeses with lower pH, dry matter, calcium, sodium chloride, and water-soluble nitrogen concentrations. These cheeses had also a less firm and more elastic texture, a more acidic taste, and a yogurt/whey aroma.  相似文献   

17.
The present study was undertaken to study the effects of application of natural wood smoke on ripening of Cheddar cheese, and to determine the effects of smoking before or after ripening on cheese quality. A 20-kg block of Cheddar cheese obtained immediately after pressing was divided into six approximately 3-kg blocks and ripened at 8 degrees C for up to 270 d. One 3-kg block was taken after 1 d, 1, 3, 6, or 9 mo and smoked for 20 min, then returned to the ripening room for further ripening. Cheeses were sampled at intervals for lactobacilli counts, moisture, pH, and proteolysis. Sensory analysis was conducted on 6 and 9-mo-old cheeses by a trained sensory panel (n = 7). Results show that application of natural wood smoke did not significantly affect cheese pH or primary proteolysis during ripening. However, secondary proteolysis as assessed by the concentrations of free amino acids was generally higher in smoked cheeses than in control cheeses after 6 mo of ripening. Cheese smoked after 6 mo of ripening had better smoked flavor than that smoked after 9 mo of ripening. Cheese smoked after 3 mo of age and further ripened for 6 mo had the highest smoked flavor intensity. It is concluded that it is best to smoke cheese after ripening for at least 3 mo.  相似文献   

18.
The objective of this study is to characterise the gross chemical and microbiological status and identify the volatile compounds of mouldy Civil cheeses. A total of forty‐one samples were surveyed, and gross compositional status of the cheeses was (as mean values): 6.5 for pH, 6.2% for fat‐in‐dry matter, 51.8% for moisture and 15.3% for water‐soluble nitrogen (as% of total nitrogen). Chemical composition of the cheese samples varied widely. Mouldy Civil cheese has similar pH values and moisture contents when compared with blue‐type cheeses, but it has distinct feature for fat contents. The microbiological counts of the samples were found to be high and some samples contained coliform bacteria. A total of 95 volatiles, including esters (28), acids (6), ketones (12), aldehydes (3), alcohols (15), terpenes (10), sulphur compounds (3) and miscellaneous (18), were identified in the volatile fractions of the cheeses, and principal volatile groups were esters, alcohols and ketones.  相似文献   

19.
The aim of this study was to determine the effects of heating applications on the shelf life of vacuum‐packed white cheese. Shelf life was evaluated for chemical, microbiological and organoleptic properties during the ripening period of 90 days. For this purpose, pickled white cheeses made with commercial starter cultures (Chr. Hansen R707 Lactococcus lactis subsp. lactis, L. lactis subsp. cremoris) were put in polyamide bags for vacuum packaging. During the ripening period, a water bath was used for heating applications at 65, 70 and 72C for 15, 10 and 5 min, respectively. In the ripening period, there were no changes in the values of dry matter in the control group. Dry matter values in control cheese were 40.02–42.09% (average value: 40.87%). Total acidity, protein (%), soluble nitrogen, ripening index (RI), tyrosine content and volatile fatty acid values all showed significant increases between the first and 90th days of the ripening period. However, in the heated cheese groups, dry matter showed no changes, but compared with the control group cheese total acidity, protein (%), soluble nitrogen, RI, tyrosine content and volatile fatty acid values increased but not as much as the control group.  相似文献   

20.
Lactobacillus casei cells were immobilized on fruit (apple and pear) pieces and the immobilized biocatalysts were used separately as adjuncts in probiotic cheese making. In parallel, cheese with free L. casei cells and cheese only from renneted milk were prepared. The produced cheeses were ripened at 4 to 6°C and the effect of salting and ripening time on lactose, lactic acid, ethanol concentration, pH, and lactic acid bacteria viable counts were investigated. Fat, protein, and moisture contents were in the range of usual levels of commercial cheeses. Reactivation in whey of L. casei cells immobilized on fruit pieces after 7 mo of ripening showed a higher rate of pH decrease and lower final pH value compared with reactivation of samples withdrawn from the remaining mass of the cheese without fruit pieces, from cheese with free L. casei, and rennet cheese. Preliminary sensory evaluation revealed the fruity taste of the cheeses containing immobilized L. casei cells on fruit pieces. Commercial Feta cheese was characterized by a more sour taste, whereas no significant differences concerning cheese flavor were reported by the panel between cheese containing free L. casei and rennet cheese. Salted cheeses scored similar values to commercial Feta cheese, whereas unsalted cheese scores were significantly lower, but still acceptable to the sensory panelists.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号