首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 31 毫秒
1.
利用Gleeble-3800数字控制热/力模拟试验机对Q690低碳微合金钢进行高温单道次热压缩实验,研究了不同变形温度(850~1150℃)、应变速率(0.01 ~30 s-1)条件下的热变形行为.采用峰值应力和饱和应力共同描述流变应力,确定了实验钢热变形激活能Q=356.05 kJ/mol,数值模拟回归出了实验钢的热变形本构方程.根据应变硬化率和应力的关系,确定了动态再结晶的临界应变值及其与Zener-Hollomon因子的关系式.  相似文献   

2.
通过Gleeble-2000D热/力模拟试验机对Nb微合金化齿轮钢18CrNiMo7-6进行了热压缩试验,研究了试验钢在变形温度为900~1100℃、应变速率为0.01、0.1、1和10 s-1下的热塑性,计算了热变形激活能,并构建了峰值应力的本构方程。结果表明,试验钢的应力-应变曲线具有典型的动态再结晶特征,动态再结晶为主要的软化机制;在相同应变速率下,变形温度越高,热塑性越好,动态再结晶是一个热激活过程;通过Thermo-calc热力学软件计算得到,试验钢中主要存在的碳化物为M23C6和NbC,其中NbC的全固溶温度达到1180℃,Nb主要以NbC析出相为主,NbC在不同变形温度下的析出含量分别为0.0343%、0.0322%、0.0289%、0.0236%及0.0156%;采用Arrhenius双曲正弦函数建立了试验钢的峰值应力本构方程,确定了热变形激活能为Q=344.55 kJ/mol,模型预测出的峰值应力与实测峰值应力平均误差1.5%。  相似文献   

3.
为了研究中碳含钒微合金非调质钢的热变形行为,在变形温度900~1100℃C和应变速率0.01~10 s~(-1)下通过Gleeble-3500热模拟试验机进行了单道次热压缩试验。结果表明:试验钢因热变形而产生加工硬化,使应力得到提升,应力会随着应变速率的提高和热加工温度的降低而有明显的提升,峰值应力随之升高;通过计算得到试验钢的热变形激活能为285.242kJ/mol,并由此得到了试验钢的本构方程;热压缩过程中试验钢发生了动态再结晶,当发生完全动态再结晶时,应变速率较低和温度较高的试样其晶粒尺寸要比应变速率高和温度较低的试样的晶粒尺寸大。  相似文献   

4.
利用RC-1130型蠕变持久试验机测试了时效态Mg-12Gd-3Y-1Sm-0.5Zr合金在(200、250、300℃)/(50、70、90 MPa)的条件下的拉伸蠕变行为。结果表明:当蠕变温度一定时,合金的蠕变应变随蠕变应力增加而增大;当蠕变应力一定时,蠕变应变随蠕变温度增大而增大,合金的蠕变应变对蠕变温度更敏感。由应力指数和蠕变激活能计算可知,蠕变应力为50~90 MPa,在200℃时,合金的应力指数为1.560;在250和300℃时,应力指数分别为2.230和3.602。蠕变温度为200~250℃,50 MPa下,合金的蠕变激活能为111.9 kJ/mol;当应力增大至70 MPa和90 MPa时,蠕变激活能分别为137.4 kJ/mol和142.6 kJ/mol;在250~300℃/50~90 MPa条件下,合金的蠕变激活能为126.2~87.0 kJ/mol。随着蠕变温度和应力的提高,合金的蠕变机制由晶界滑移为主转变为位错滑移为主。  相似文献   

5.
在变形温度800~1200℃和应变速率0.01~50s-1下,利用Gleeble-3800热模拟试验机对Aermet100钢的高温变形本构关系与微观组织演变进行了研究。结果表明,增加应变速率和降低变形温度都能提高材料的流动应力,延迟动态再结晶发生,使变形材料表现出加工硬化和动态回复。运用位错理论研究了微观组织和流动应力曲线的变化规律并做出了合理的解释。在压缩实验的变形条件下变形激活能为489.10kJ/mol。确定了峰值应力、变形温度和应变速率之间的双曲正弦模型的本构关系。  相似文献   

6.
利用MMS-300型热力模拟试验机对含硼钒微合金钢及不含硼的钒微合金钢在900~1100 ℃变形温度及0.1~10 s-1应变速率条件下进行了单道次热压缩试验,测定了其真应力-真应变曲线,研究了变形温度和应变速率及加入微量硼对试验钢的动态再结晶行为的影响,并采用回归分析法确定了两种试验钢的热变形激活能,建立了试验钢的热变形方程,得出了热变形过程中峰值应变与Z参数之间的关系。结果表明,含硼及不含硼试验钢在0.01、0.1 s-1的低应变速率和900~1100 ℃的变形温度下均发生动态再结晶,两种试验钢的激活能分别为284.9、287.7 kJ/mol,峰值应变与Z参数之间呈线性关系;加入微量硼后,使钒微合金钢动态再结晶激活能和峰值应力稍微降低,对动态再结晶有所促进。  相似文献   

7.
利用热力模拟实验技术、OM及SEM等,研究了一种钛微合金高强钢在温度为850~1150℃及应变速率为0.1~10 s-1条件下的奥氏体动态再结晶行为。采用最小二乘法回归确定了该微合金钢的热变形激活能和表观应力指数,建立了该微合金钢的热加工方程,并获得了热变形过程中峰值应变、临界应变与Z参数之间的关系。结果表明,峰值应变、临界应变与lnZ之间呈线性关系;在较高温度和较低应变速率条件下该微合金钢易于发生动态再结晶。  相似文献   

8.
采用Gleeble-3500热模拟试验机模拟了屈服强度550 MPa级桥梁钢轧板单道次热压缩变形过程,得到了试验钢的真应力-真应变曲线,分析了变形温度和应变速率对动态再结晶行为的影响,并建立了试验钢的再结晶图。结果表明,在较高的变形温度和较低的应变速率下,动态再结晶易进行。实验在动态再结晶激活能为460.14 kJ/mol时,建立了试验钢动态再结晶动力学模型。  相似文献   

9.
采用Gleeble-3500热模拟试验机研究了微碳钢在700~1100℃、0.01~10 s-1条件下的热变形行为。确定了其在铁素体区和奥氏体区的热变形方程。建立了微碳钢在不同应变量下的热加工图(Processing Map)。结果表明,在铁素体区和奥氏体区,试验钢的峰值应力大小基本相当;试验钢在铁素体区和奥氏体区的热变形激活能分别为302 kJ/mol和353 kJ/mol;不同真应变下的热加工图相似,当变形温度为875℃,应变速率为0.01 s-1时,能量消耗效率达到最大值为0.5。  相似文献   

10.
采用Gleeble-3500热模拟试验机对一种新型冷轧工作辊用高速钢进行了热压缩变形试验,研究了该钢在900~1150℃、应变速率为0.01~10 s-1条件下的动态再结晶行为,测量了该钢的应力-应变曲线并观察了其典型的微观组织,建立了Z参数表达式、热变形方程、峰值应力和峰值应变与Z参数的关系及动态再结晶模型图。结果表明:冷轧工作辊用高速钢的应力-应变曲线表现为动态再结晶型;其热变形激活能为541.4 kJ/mol;峰值应力、峰值应变与Z参数近似成指数关系;随着Z参数的增大,发生动态再结晶的临界应变εp和发生完全再结晶的应变εs均增加。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号