首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper presents the development of a micro coaxial helicopter (MCR UAV) whose main characteristic is that it should be carried by an air shuttle transporter and then released in a desired place far away from the launching site, to develop surveillance missions in hover flight. A real-time embedded system is built in order to validate the proposed aerodynamic prototype, and a classic control law based on a classical backstepping procedure for the dynamic system is implemented to test this vehicle in autonomous flight. Finally, simulation and practical results are presented for hover flight.  相似文献   

2.
An image-based visual servo control is presented for an unmanned aerial vehicle (UAV) capable of stationary or quasi-stationary flight with the camera mounted onboard the vehicle. The target considered consists of a finite set of stationary and disjoint points lying in a plane. Control of the position and orientation dynamics is decoupled using a visual error based on spherical centroid data, along with estimations of the linear velocity and the gravitational inertial direction extracted from image features and an embedded inertial measurement unit. The visual error used compensates for poor conditioning of the image Jacobian matrix by introducing a nonhomogeneous gain term adapted to the visual sensitivity of the error measurements. A nonlinear controller, that ensures exponential convergence of the system considered, is derived for the full dynamics of the system using control Lyapunov function design techniques. Experimental results on a quadrotor UAV, developed by the French Atomic Energy Commission, demonstrate the robustness and performance of the proposed control strategy.  相似文献   

3.
This paper focuses on the problem of computing optimal transition maneuvers for a particular class of tail-sitter aircraft able to switch their flight configuration from hover to level flight and vice versa. Both minimum-time and minimum-energy optimal transition problems are formulated and solved numerically in order to compute reference maneuvers to be employed by the onboard flight control system to change the current flight condition. In order to guide the numerical computation and to validate its results, in a first stage approximated solutions are obtained as a combination of a finite number of motion primitives corresponding to analytical trajectories of approximated dynamic models. The approximated solution is then employed to generate an initial guess for the numerical computation applied to a more accurate dynamic model. Numerical trajectories computed for a small scale prototype of tail-sitter aircraft are finally presented, showing the effectiveness of the proposed methodology to deal with the complex dynamics governing this kind of systems.  相似文献   

4.
建立准确地系统模型是实现四旋翼无人机的自动飞行控制的基础,为此提出了一种遗传算法,并将其应用于四旋翼无人机系统参数辨识当中。首先,根据四旋翼受力分析建立了小角度下的线性系统模型;然后,将遗传算法应用于线性模型未知参数的辨识中;最后,分别对比了滚转、俯仰和偏航方向的加速度值与实际测量值。实验结果表明在悬停状态或小角度飞行状态下,该辨识方法能够建立比较精确的系统模型。  相似文献   

5.
无人直升机在悬停/小速度飞行阶段具有特殊的物理特性,给控制系统的设计带来了诸多技术难题;针对无人直升机悬停/小速度段位置控制的需求,提出了一种基于"姿态角阻尼内回路"的位置控制结构,该控制结构采用内回路姿态角阻尼增稳,外回路位置控制的控制方式;并且针对增稳回路自适应性、抗风补偿和位置控制精度等问题,分别采用前馈自动配平机制与非线性PID控制方法对常规控制律进行改进;仿真验证表明,所提出的控制策略和控制律设计结果达到了较好的控制效果。  相似文献   

6.
In this paper, a nonlinear control augmented system for a novel eight rotor helicopter is developed, in order to achieve hover flight. Simulation results underline the good performance of the proposed control strategy. Experimental tests have been performed showing the reliability of the proposed approach.  相似文献   

7.
An output tracking control problem for an unmanned tandem rotor helicopter with variance constraints is investigated in this paper. A modified Trajectory Linearization Control (TLC) is proposed to stabilize a nonlinear continuous-time flight dynamics system of the tandem helicopter. The tracking controller structure of TLC is designed by using two-time-scale nonlinear dynamic inversion. The base control law of the translational and attitude loops is designed in a pseudo-inversion feedforward controller to deal with nonlinear features of the plant and a proportional integral controller to stabilize the linear slowly time-variant error system resulted from the nonlinear flight system. Furthermore, a feasible TLC strategy is designed to meet a performance index set including steady trajectory tracking error variance and desired Parallel D-spectrum (PD-) eigenvalues to achieve good flight quality. The Variance-constrained Trajectory Linearization Control (VCTLC) is designed to realize the desired steady tracking precision and agile capability. Flight simulation results show the VCTLC method is feasible and effective in attitude and altitude tracking.  相似文献   

8.
This paper presents the design of a stable non-linear control system for the remote visual tracking of cellular robots. The robots are controlled through visual feedback based on the processing of the image captured by a fixed video camera observing the workspace. The control algorithm is based only on measurements on the image plane of the visual camera–direct visual control–thus avoiding the problems related to camera calibration. In addition, the camera plane may have any (unknown) orientation with respect to the robot workspace. The controller uses an on-line estimation of the image Jacobians. Considering the Jacobians’ estimation errors, the control system is capable of tracking a reference point moving on the image plane–defining the reference trajectory–with an ultimately bounded error. An obstacle avoidance strategy is also developed in the same context, based on the visual impedance concept. Experimental results show the performance of the overall control system.  相似文献   

9.
Real-Time Stabilization of an Eight-Rotor UAV Using Optical Flow   总被引:1,自引:0,他引:1  
An original configuration of a small aerial vehicle having eight rotors is presented. Four rotors are devoted to the stabilization of the orientation of the helicopter, and the other four are used to drive the lateral displacements. A precompensation on the roll and pitch angles has been introduced so that the attitude dynamics is practically independent of the translational dynamics. This compensation is directly related to the velocity of the lateral motors. The dynamical model is obtained using the Euler–Lagrange approach. The proposed configuration is particularly useful for image processing since the the camera orientation is held constant. The eight-rotor rotorcraft is simpler to pilot than other rotorcrafts. A control strategy is proposed that uses the optical flow measurements to achieve a hover flight that is robust with respect to perturbations like wind. The new aerial configuration and control strategy have been tested in real-time experiments.   相似文献   

10.
Small bird-sized aerial robots are expendable and can fly over obstacles and through small openings to assist in the acquisition and distribution of intelligence during reconnaissance, surveillance, and search-and-rescue missions in urban environments. However, limited flying space and densely populated obstacle fields require a vehicle that is capable of hovering but is also maneuverable. A secondary flight mode was incorporated into a fixed-wing aircraft to preserve its maneuverability while adding the capability of hovering. An inertial measurement sensor and onboard flight control system were interfaced and used to transition the hybrid prototype from cruise to hover flight and sustain a hover autonomously. Furthermore, the hovering flight mode can be used to maneuver the aircraft through small openings such as doorways. An ultrasonic and infrared sensor suite was designed to follow exterior building walls until an ingress route was detected. Reactive control was then used to traverse the doorway and gather reconnaissance. This paper describes the holistic approach of platform development, sensor suite design, and control of the hybrid prototype.  相似文献   

11.
A standard assumption in adaptive control is that the parameters being estimated are either constant or vary ‘slowly’ as a function of time. This paper investigates the adaptive control of a class of systems in which the parameters vary as a specified function of state. The dynamic structure of the systems may be either linear or nonlinear. For this class of systems, the state space is separated into distinct subsets. The parameters are then required to remain constant, or be slowly time varying, within the subsets. Given a controller for the system, an analysis of the output error dynamics and the parameter error dynamics leads to a parameter adaptation algorithm with a variable structure. The stability and convergence of both the parameter error and the output tracking error are investigated. An analysis of SISO linear systems with full state information is used to motivate and illustrate the treatment of SISO feedback linearizable systems.  相似文献   

12.
This paper presents a practical scheme to control heave motion for hover and automatic landing of a Rotary-wing Unmanned Aerial Vehicle (RUAV) in the presence of strong horizontal gusts. A heave motion model is constructed for the purpose of capturing dynamic variations of thrust due to horizontal gusts. Through the construction of an effective gust estimator, a feedback–feedforward controller is developed which uses available measurements from onboard sensors. The proposed controller dynamically and synchronously compensates for aerodynamic variations of heave motion, enhancing disturbance-attenuation capability of the RUAV. Simulation results justify the reliability and efficiency of the suggested gust estimator. Moreover, flight tests conducted on our Eagle helicopter verify suitability of the proposed control strategy for small RUAVs operating in a gusty environment.  相似文献   

13.
Visual servoing is a powerful approach to enlarge the applications of robotic systems by incorporating visual information into the control system. On the other hand, teleoperation – the use of machines in a remote way – is increasing the number of applications in many domains. This paper presents a remote visual servoing system using only partial camera calibration and exploiting the high bandwidth of Internet2 to stream video information. The underlying control scheme is based on the image-based philosophy for direct visual servoing – computing the applied torque inputs to the robot based in error signals defined in the image plane – and evoking a velocity field strategy for guidance. The novelty of this paper is a remote visual servoing with the following features: (1) full camera calibration is unnecessary, (2) direct visual servoing does not neglect the robot nonlinear dynamics, and (3) the novel velocity field control approach is utilized. Experiments carried out between two laboratories demonstrated the effectiveness of the application. Work partially supported by CONACyT grant 45826 and CUDI.  相似文献   

14.
The mode‐to‐mode transition problem involves taking initial states in the start mode to the equilibrium point of the goal mode, where each mode of operation corresponds to an operating regime about an equilibrium point. Like the problem of dynamic transitions between various equilibria, there is no consistent theory that deals with the mode‐to‐mode transition problem. This paper presents a method of designing mode‐to‐mode controllers by blending the start and goal mode controllers. The blending gains are determined by the phase portrait assignment algorithm. The phase portrait assignment algorithm is a systematic technique that uses dynamic programming and center‐point cell mapping to design fuzzy logic controllers. A hover mode to forward flight mode controller for a small‐scale helicopter is synthesized to illustrate the design methodology. Simulation results show that the controller is able to transition stably from hover to forward flight. Finally, sensitivity analysis of the hover to forward flight controller is performed for small parameter perturbations. © 2000 John Wiley & Sons, Inc.  相似文献   

15.
小型四旋翼直升机的建模与仿真控制   总被引:1,自引:0,他引:1  
刘志军  吕强  王东来 《计算机仿真》2010,27(7):18-20,69
针对实现对小型四旋翼直升机的飞行控制,为提高飞行性能和加强稳定性,根据四旋翼直升机特有的机械结构和飞行原理,利用牛顿-欧拉方程建立了小型四旋翼直升机的飞行动力学数学模型,而且对该型进行了合理的简化.同时在Matlab/Simulink仿真环境下,采用直升机动力学模型搭建了模块化、层次化的系统仿真图,并通过PID控制算法对直升机悬停状态进行仿真,实现了直升机姿态控制.仿真结果表明在具有小扰动的条件下,模型能够仿真小型四旋翼直升机的飞行状态,满足直升机飞行姿态的控制要求.  相似文献   

16.
This paper presents a robust nonlinear output feedback control method that achieves three degree of freedom (3-DOF) attitude trajectory tracking of a hover system test bed. The proposed control method formally incorporates dynamic model uncertainty in addition to test bed voltage constraints. To reduce the computational requirement in the closed-loop system, constant feedforward estimates of the input-multiplicative parametric uncertainty are utilized in lieu of adaptive parameter estimates. To eliminate the need for angular rate measurements, the control design employs a bank of dynamic filters, which operates as a velocity estimator in the closed-loop system. A rigorous error system development and Lyapunov-based stability analysis are presented to prove asymptotic 3-DOF attitude trajectory tracking control. Computer simulation and experimental results are also included to illustrate the performance of the attitude control method using the Quanser 3-DOF hover system test bed.  相似文献   

17.
《Advanced Robotics》2013,27(2-3):381-393
This paper proposes an image-based visual servo control method for a micro helicopter. The helicopter does not have any sensors to measure its position or posture on the body. A stationary camera is placed on the ground and it obtains image features of the helicopter. The differences between current features and given reference features are computed. PID controllers then make control input voltages for helicopter control and they drive the helicopter. The proposed controller can avoid some major difficulties in computer vision such as numerical instability due to image noise or model uncertainties, since the reference is defined in the image frames. An experimental result demonstrates that the proposed controller can keep the helicopter in a stable hover.  相似文献   

18.
ABSTRACT

This paper investigates the zero-sum differential game problem for a class of uncertain nonlinear pure-feedback systems with output constraints and unknown external disturbances. A barrier Lyapunov function is introduced to tackle the output constraints. By constructing an affine variable at each dynamic surface control design step rather than utilising the mean-value theorem, the tracking control problem for pure-feedback systems can be transformed into an equivalent zero-sum differential game problem for affine systems. Then, the solution of associated Hamilton–Jacobi–Isaacs equation can be obtained online by using the adaptive dynamic programming technique. Finally, the whole control scheme that is composed of a feedforward dynamic surface controller and a feedback differential game control strategy guarantees the stability of the closed-loop system, and the tracking error is remained in a bounded compact set. The simulation results demonstrate the effectiveness of the proposed control scheme.  相似文献   

19.
This paper describes the modeling, control and hardware implementation of an experimental tilt-rotor aircraft. This vehicle combines the high-speed cruise capabilities of a conventional airplane with the hovering capabilities of a helicopter by tilting their four rotors. Changing between cruise and hover flight modes in mid-air is referred to transition. Dynamic model of the vehicle is derived both for vertical and horizontal flight modes using Newtonian approach. Two nonlinear control strategies are presented and evaluated at simulation level to control, the vertical and horizontal flight dynamics of the vehicle in the longitudinal plane. An experimental prototype named Quad-plane was developed to perform the vertical flight. A low-cost DSP-based Embedded Flight Control System (EFCS) was designed and built to achieve autonomous attitude-stabilized flight.  相似文献   

20.
This work is centered in the definition of a transition management system for a small autonomous helicopter based on trajectory smoothing and a finite state machine (FSM). A smooth flight schedule decreases transients originated by direction changes and flight mode transitions (e.g., horizontal flight to hover mode). Although previous works have presented trajectory generation and FSM oriented controls, no previous studies have mixed these approaches in a single framework together with speed transitions. The proposed methods are validated in simulation with a realistic dynamic model of a small helicopter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号