首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. The incorporation of L-[U-14C]leucine, L[U-14C]histidine and L-[U-14C]phenylalanine into casein secreted during perfusion of isolated guinea-pig mammary glands was demonstrated. 2. The extent of incorporation of label into casein residues was consistent with their being derived from free amino acids of the perfusate plasma. 3. The mean transit time of the amino acids from perfusate into secreted casein was approx. 100 min. 4. Whereas radioactive histidine and phenylalanine were incorporated solely into milk protein, radioactivity from [U-14C]valine was also transferred to CO2 and to an unidentified plasma component, and from [U-14C]leucine to plasma glutamic acid. 5. Evidence from experiments with [U-14C]phenylalanine suggests that, as in rats, but in contrast with ruminant species, guinea-pig mammary tissue does not possess phenyl alanine hydroxylase activity. 6. The results are discussed in relation to the possible role of essential amino acid catabolism in the control of milk-protein synthesis.  相似文献   

2.
The turnover rates of plasma lactate, normalized for O2 consumption rate, are higher in the fetus than in the adult. This occurs despite very low rates of fetal gluconeogenesis which preclude the recycling of lactate carbon into glucose. In an effort to establish the main routes of disposal of fetal plasma lactate, 12 midgestation ovine fetuses (age 74 +/- 1 days) were infused intravenously at constant rate with L-[U-14C]lactate for a 4-hour period. At the end of the infusion, the amounts of 14C retained by the fetus and by the placenta, and the distribution of the retained 14C in free and protein-bound amino acids and in lipids were measured. Of the total 14C infused, 17.0 +/- 1.4% was recovered in the placenta, 4.0 +/- 0.3% in the fetal liver, and 15.0 +/- 0.8% in the extrahepatic fetal tissues. Of the retained radioactive carbon, 45-57% was recovered in the free and protein-bound amino acid fractions and 11-17% in the lipid fractions. Approximately 90% of the 14C in the free amino acid fractions was present as glutamate/glutamine, serine, glycine, and alanine carbon. In conjunction with data on fetal CO2 production from lactate carbon, these results demonstrate that the main routes of fetal lactate disposal are oxidation and synthesis of nonessential amino acids and lipids.  相似文献   

3.
Evidence is accumulating that the amino acid requirements for neonates receiving total parenteral nutrition (TPN) are significantly different than those for oral feeding and need to be determined. The parenteral threonine requirement was determined in 3-d-old male Yorkshire piglets (n = 25) by examining the effect of varying dietary threonine intakes [0.05-0.6 g/(kg.d)] on phenylalanine oxidation. The diet included adequate energy, total amino acids and phenylalanine, with excess tyrosine. Phenylalanine kinetics were determined from a primed, continuous intravenous infusion of L-[1-14C]phenylalanine. Phenylalanine oxidation, estimated from the rate of 14CO2 released in expired air during isotope infusion, decreased (P < 0.05) as threonine intake increased from 0.05 to 0.15 g/(kg.d) and was low and constant for threonine intakes >0.15 g/(kg.d). Using breakpoint analysis with 95% confidence interval (CI), mean requirement and safe level of parenteral threonine intake were estimated to be 0.19 and 0.21 g/(kg. d), respectively (equivalent to 13 and 14 mg/g amino acids, respectively). To compare these data with those of orally fed controls, we then repeated the experiment by infusing identical diets intragastrically to piglets (n = 25); the varying dietary threonine intakes were 0.1-1.2 g/(kg.d). Employing identical kinetics and analyses, the mean requirement and safe level of oral threonine intake were estimated to be 0.42 and 0.51 g/(kg.d), respectively (equivalent to 28 and 34 mg/g amino acids, respectively). These data demonstrate that the threonine requirement of neonates during TPN is approximately 45% of the mean oral requirement.  相似文献   

4.
This study was conducted to identify the most rate-limiting amino acids for whole-body protein synthesis in acquired immunodeficiency syndrome (AIDS) patients. We postulated that an essential amino acid that would be rate limiting in AIDS should have a low basal plasma concentration and should remain at a low level during amino acid infusion. Seven male AIDS patients (median age 37 y, CD4 cell count: 76 mm-3) without any clinically active opportunistic infection during the month before the experiment were infused intravenously with a complete amino acid-glucose mixture for 2.5 h. Eight healthy volunteers were used as controls. Before the infusion, the concentrations of most free essential amino acids (methionine, threonine, histidine, isoleucine, leucine and tryptophan) were significantly lower (P < 0.05) in AIDS patients than in controls. Most plasma free essential amino acids increased significantly during infusion. However, the absolute increase above basal levels for threonine, valine, lysine, (P < 0.05) and methionine (P < 0.073) was smaller in AIDS patients than in control subjects. Thus, threonine and possibly methionine may be rate limiting for whole-body protein synthesis in AIDS patients, suggesting that there are selective amino acid requirements in patients with AIDS.  相似文献   

5.
1. The fractional rate of loss of 14C and body-weight was measured in adult male rats after giving 14C-labelled methionine or leucine and maintaining rats for 30 d on a low-protein or a specific methionine+cystine-free diet: carcasses were then analysed for protein and fat 14C radioactivity. 2. The fractional loss of 14CO2 from [14C]methionine or [14C]leucine between day 20 and day 30 was always greater than the fractional loss of body-weight. 3. Carcass protein 14C radioactivity after giving [14C]leucine was higher than after giving [14C]methionine, but fat 14C radioactivity after either 14C-labelled amino acid was only a small proportion of the total body 14C radioactivity. 4. After correction of the fractional loss of 14CO2 for urinary 14C loss, but not body-weight loss, absolute amino acid loss was calculated using published values for methionine and leucine content of rats. 5. The best estimates of endogenous amino acid loss obtained using I-14C-labelled amino acids, expressed as mg/kg body-weight 0.75 per day were leucine 79, methionine 38.  相似文献   

6.
The incorporation of [14C]leucine and [14C]threonine into kidney cortex proteins was studied during 6 days' hypothermic perfusion of dog kidneys at 8-10 degrees C and during in vitro incubation of dog kidney cortex slices at 37 degrees C. Leucine carbon was incorporated into proteins at a higher rate than threonine carbon both during in vitro incubation of kidney cortex slices and during hypothermic kidney perfusion. The incorporation of leucine and threonine during hypothermic perfusion was linear for 6 days but 50-100 times lower than the incorporation of leucine and threonine in kidney cortex slices at 37 degrees C. During hypothermic perfusion there was a decrease in specific activity of leucine and threonine in the perfusate corresponding to a degradation of proteins which was greater than protein synthesis as calculated from the incorporation of label into proteins. Leucine carbon was recovered in CO2 during hypothermic perfusion and in vitro incubation of kidney cortex slices at 37 degrees C. The incorporation of threonine carbon into CO2 was about 10% of the corresponding value for leucine both during hypothermic kidney perfusion and during in vitro incubation of kidney cortex slices at 37 degrees C. It is concluded that there is a turnover of kidney proteins during hypothermic perfusion with a perfusate containing amino acids.  相似文献   

7.
Low density lipoprotein cholesteryl [14C]oleate (LDL-[14C]CO) was used as a tool to label lysosomes with cholesteryl [14C]oleate (CO) and to follow subsequently the metabolic processing of oleic acid released by acid lipase. Liberated [14C]oleate was incorporated into glycerolipids, mainly into phosphatidylcholine. Incubations in the presence of various concentrations of exogenously added oleic acid and double label experiments showed that oleic acid derived from lysosomal degradation of CO and exogenously added oleic acid distributed in a similar fashion among triacylglycerol and various phospholipids. To further study the metabolism of LDL-derived oleic acid, experiments were performed in which fibroblasts were prelabeled with LDL-[14C]CO. The subsequent processing of lysosome-derived oleic acid was followed with time without LDL-[14C]CO in the medium. From these experiments it became clear that apart from the esterification into glycerolipids a substantial part of lysosome-derived oleic acid was released into the medium. The efflux of oleic acid into the medium preceded the incorporation into glycerolipids, was dependent on the composition of the extracellular medium, and was energy-independent. Our data are compatible with a mechanism in which lysosome-derived fatty acids are transported to the plasma membrane prior to transport to endoplasmic reticulum for esterification. Intra- and extra-cellular factors influence the distribution of lysosome-derived oleic acid among cells and medium.  相似文献   

8.
Amino-acid analyses showed that proline, glutamic acid and leucine were the most common amino acids in immature or developing enamel and in each of its fractions (i.e., in the 1st and 14th water-extractable fractions of a sequential series of extractions, EDTA-water soluble and water-insoluble fractions. The immature enamel and its 1st and 14th water-extractable fractions were similar in their proportions of the basic amino acids (lysine, histidine and arginine), the beta-hydroxylated aliphatic amino acids (valine, leucine, and isoleucine). On the other hand, the immature enamel differed from the water-extractable fractions chiefly in its relative content of aspartic acid, glutamic acid, alanine, proline, glycine, tyrosine and methionine. Also the 1st water-extractable fraction differed from the 14th in its amino-acid profile. tthe EDTA-water-soluble fraction most closely resembled the 14th water-extractable fraction except for its proportion of arginine and alanine residues. Although with polyacrylamide gel electrophoresis the EDTA-water-soluble and the water-extractable fractions exhibited companion bands (at least 7 peaks were evident at pH 9.3) they differed decidely as to which band was the most prominent. The water-insoluble fractions compared with any of the soluble fractions or with immature enamel showed a higher percent of serine, threonine, glycine, aspartic acid, alanine, valine, lysine, and arginine but relatively less glutamic acid, proline, methionine and histidine. Neither hydroxyproline nor hydroxylsine were detected in any of the samples.  相似文献   

9.
The intracellular concentration of free leucine, isoleucine, and valine and their metabolism were studied in lymphoblast cultures established from peripheral blood of an individual with maple syrup urine disease (MSUD) and a control subject. Branched-chain alpha-keto acid decarboxylase activity in the MSUD cells was 10% or less of the control value as measured by the ability of the cells to release 14CO2 from the corresponding [1-14C]labeled branched-chain amino acid. The intracellular concentrations of free leucine and isoleucine were increased three-fold in MSUD lymphoblasts as compared to control cells. Free valine was present in only trace amounts of less than 0.1 mM in both cell lines. Exposure of normal and mutant cells to a 10 mM load of leucine, isoleucine, and valine revealed in a comparable concentration within cells after 24 hr. Concentrations returned to base values in normal cells 12 hr after removal of load, but leucine remained elevated in MSUD cells after 3 days. Leucine and its keto acid, alpha-ketoisocaproic acid, added to the culture medium gave significant growth inhibition of MSUD lymphoblasts but not of normal cells, in the millimolar range. Isoleucine, valine, and their keto acids had no effect.  相似文献   

10.
During feeding experiments with [omega-14C]oleic acid and [omega-14c]nervonic acid to adult rats, 14C-labelled C26, C28 and C30 fatty acids were recovered from the intestinal mucosa, liver, plasma, kidney and stools. The structures of these fatty acids were determined by g.l.c., radio-g.l.c. and mass spectrometry. The Schmidt and Ginger degradation methods indicated that most of the 14C found in these extra-long fatty acids remained in the omega position. These radioactive extra-long fatty acids were found mainly in the polar lipids of rats killed 3 or 15 h after being fed on labelled oleic acid or nervonic acid. Rats killed 63 h later yielded only traces of these extra-long fatty acids. When the rats were given antibiotics or received the same radioactive fatty acids by intravenous injection, the labelled extra-long fatty acids could not be detected in any of the tissues. We conclude that they were probably synthesized by elongation of oleic acid and nervonic acid by intestinal micro-organisms (probably yeasts) and then absorbed by the intestinal mucosa.  相似文献   

11.
A method was developed for measuring protein fractional synthetic rates using the N-methoxycarbonylmethyl ester (MCM) derivative of L-[1-13C]valine and on-line gas chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS). The derivatization procedure can be performed rapidly and GC separation of valine from the other branched-chain amino acids, leucine and isoleucine, is easily obtained. A good linear relationship was observed between the increment of the 13C/12C isotope ratio in CO2 gas derived from the combustion of derivatized valine and the tracer mole ratio of L-[1-13C]valine to unlabelled valine. The limit of quantitation was at an L-[1-13C]valine tracer mole ratio of 0.0002. The method was used to measure the isotopic enrichment of L-[1-13C]valine in standard mixtures and in skeletal muscle of six growing piglets infused with L-[1-13C]valine (2 mg kg-1 h-1 for 6 h). After infusion of L-[1-13C]valine the mean tracer mole ratio in plasma of L-[1-13C]valine at the isotopic steady state was 0.0740 +/- 0.0056 (GC/MS, mean +/- SEM) and the mean tracer mole ratio of valine in muscle protein fraction at 6 h was 0.000236 +/- 0.000038 (GC/C/IRMS). The resulting mean protein fractional synthetic rate in piglet skeletal muscle was 0.052 +/- 0.007% h-1, which is in good agreement with literature data obtained with alternative, more elaborate techniques. By this method protein fractional synthetic rates can be measured at low isotopic enrichment levels using L-[1-13C]valine, the MCM derivative and on-line GC/C/IRMS.  相似文献   

12.
Reference values were determined for 23 plasma free amino acids from measurements done in 148 healthy children ranging from 0 to 18 years of age. Amino acid analysis was performed by ion-exchange chromatography. We propose a graphic form of presenting the age-specific distribution of plasma amino acid concentrations where the 10th, 50th, and 90th quantiles are illustrated. Although each amino acid possesses its own pattern of distribution, we can identify five different profiles. Nine amino acids (alanine, arginine, asparagine, methionine, ornithine, phenylalanine, proline, threonine, and tyrosine) demonstrate a decrease in their concentrations during the first year of life; their concentrations then tend to increase throughout childhood and adolescence. Nine others (cystine, glutamine, glycine, histidine, isoleucine, leucine, lysine, tryptophan, and valine) show a steady increase throughout infancy, childhood, and adolescence. Five amino acids (aspartic acid, citrulline, glutamic acid, serine, and taurine) do not follow these two common profiles. For the first time, quantile curves are produced to illustrate the age-dependent variation of amino acid concentrations from infancy to adulthood. This alternative way of presenting amino acid concentrations may facilitate the follow-up of patients with inborn errors of amino acid metabolism.  相似文献   

13.
The effect of an arginine-deficient diet containing 3.4% glutamate on net flux of amino acids across the portal-drained viscera and liver was studied in rats at 0, 1 or 2 h after a meal and compared with that in arginine-fed controls. Net portal-drained viscera flux for most amino acids was greater in the fed state compared with the postabsorptive state except for glycine and cystine, which did not change, and methionine, which declined. Net amino acid recovery in portal blood 2 h after feeding compared with amounts consumed was highest for alanine (17.3%); recovery of other amino acids ranged from 5.6 to 15.3%. No net portal-drained viscera recovery of consumed cystine was observed. For the branched-chain and aromatic amino acids, methionine, threonine, histidine and lysine, net hepatic uptake was nearly equal to net portal-drained viscera absorption (range 77-127% of portal-drained viscera flux). Correlation coefficients between net hepatic and portal-drained viscera fluxes for leucine, valine, isoleucine, methionine and phenylalanine were 0.84 to 0.93. Postabsorptive hepatic extraction for most amino acids was zero, but after a meal, ranged from 13.3 to 22.9% for the branched-chain and aromatic amino acids. Net hepatic production of ornithine and proline occurred in arginine-fed control rats. This value was near zero for ornithine in rats fed the arginine-deficient diet. Models of interorgan amino acid metabolism in the food-deprived and fed state are presented.  相似文献   

14.
The anabolic effects of insulin are not restricted to carbohydrate and lipid metabolism but also include protein metabolism. However, the effects of insulin on protein metabolism have been difficult to demonstrate in vivo. Amino acid transport is partly regulated by insulin according to the experimental data. PET provides a way to measure fractional uptake rates of amino acids. The purpose of this study was to measure the effect of insulin on amino acid transport from the plasma to the human parotid glands. METHODS: We compared the uptake of L-[methyl-11C]methionine ([11C]methionine) into the parotid glands and cerebellum in seven healthy volunteers during the fasting state and euglycemic insulin clamp technique (1 mU/kg per minute). RESULTS: The fractional uptake rate of [11C]methionine was increased by 31% for the right parotid gland (p = 0.003) and by 29% for the left parotid gland (p = 0.009) during insulin clamp, while the increase was 19% for the cerebellum (p = 0.01). The concentration of amino acids typical for the hormone-sensitive transport system A was 11% lower during insulin infusion than in the fasting state. CONCLUSION: The uptake of methionine into brain tissue does not seem to be under major control by insulin, while the transport of methionine in the parotid glands is stimulated by insulin. PET provides a sophisticated method to study the transport system of amino acids in vivo.  相似文献   

15.
The biosynthesis of the pyrimidinyl amino acid lathyrine by seedlings of Lathyrus tingitanus L. was shown to be stimulated by uracil. [6(-14)C]Orotate, [2(-14)C]uracil and [3(-14)C]serine were incorporated into lathyrine; the incorporation of [6(-14)C]orotate was substantially decreased in the presence of uracil. Chemical degradation to locate the 14C incorporated from labelled precursors showed that 90% of the radioactivity incorporated into lathyrine from [3(-14)C]serine could be recovered in the alanine side chain. Over 80% of the radioactivity incorporated from [2(-14)C]uracil was shown to be located in C-2 of lathyrine. It is concluded that under the conditions studied, lathyrine arises from a preformed pyrimidine arising via the orotate pathway. Paradoxically, it was also possible to confirm previous reports that radioactivity from L-[guanidino-14C]homoarginine is incorporated into lathyrine and gamma-hydroxyhomoarginine. However, as homoarginine and gamma-hydroxyhomoarginine are also both labelled by [2(-14)C]uracil, it is suggested that they are products of the ring-opening of lathyrine and that reversibility of this process accounts, at least in part, for their observed experimental incorporation into lathyrine.  相似文献   

16.
Kinetics of growth and fumonisin production by Fusarium moniliforme MRC 826 in corn "patty" cultures were investigated, and a technique was developed for the production of [14C]fumonisin B1 ([14C]FB1) by using L-[methyl-14C]methionine as the precursor. A significant (P < 0.01) correlation exists between fungal growth and FB1 (r = 0.89) and FB2 (r = 0.87) production in corn patties, beginning after 2 days and reaching the stationary phase after 14 days of incubation. [14C]FB1 was produced by adding L-[methyl-14C]methionine daily to cultures during the logarithmic phase of production. Incorporation of the isotope occurred at C-21 and C-22 of the fumonism molecule and was enhanced in the presence of unlabeled L-methionine. Although the concentration of exogenous unlabeled methionine is critical for incorporation of the 14C label, optimum incorporation was achieved by adding 50 mg of unlabeled L-methionine and 200 mu Ci of L-[methyl-14C]methionine to a corn patty (30 g) over a period of 9 days, yielding [14C]FB1 with a specific activity of 36 mu Ci/mmol.  相似文献   

17.
The keto acid 2-oxo-4[methylthio]butanoic acid (OMTB) is an intermediate in the conversion of synthetic feed grade methionine sources to L-methionine in vivo in poultry and other animals. Because methionine sources are utilized by the chick with considerably less than 100% efficiency as sources of L-methionine, it is important to determine what metabolic process may limit the utilization of these sources. Because OMTB is converted to L-methionine by transamination, a study was conducted to determine which amino acids might serve as nitrogen donors in the conversion of OMTB to L-methionine in the chicken. Dialyzed tissue homogenates, mitochondria, and cytosol from liver, kidney, intestine, and skeletal muscle were incubated with OMTB and individual L-amino acids (isoleucine, leucine, valine, glutamic acid, aspartic acid, alanine, glutamine, asparagine, and phenylalanine) and the methionine that accumulated was determined by ion exchange chromatography. Tissues differed in the conversion of OMTB to methionine: kidney was most active, liver and intestinal mucosa were intermediate, and skeletal muscle had lowest activity. All amino acids supported methionine synthesis. Branched-chain amino acids and glutamic acid were the most effective substrates in tissue cytosols except in intestinal mucosa, in which asparagine was also effective. The preferred substrates in mitochondria were glutamate in liver mitochondria, isoleucine and alanine in kidney mitochondria, and branched-chain amino acids and glutamic acid in skeletal muscle mitochondria. All amino acids except alanine supported methionine synthesis from OMTB in mitochondria of intestinal mucosa. We conclude that a wide variety of amino acids can serve as substrates for transamination of OMTB in the chicken, and that the availability of nitrogen donors is unlikely to be a limiting factor in the conversion of OMTB to methionine.  相似文献   

18.
Kinetic analysis of L-leucine uptake by toadfish liver at 20 degrees C in vivo has been carried out after pulse injection of L-[14C]leucine into the hepatic portal vein. D-[3H]mannitol, which is taken up slowly by toadfish liver, is used as a marker for extracellular space and space accessible by simple diffusion. At normal plasma leucine concentration (0.1 mM), leucine uptake occurs rapidly (t1/2 = 0.25 min), representing a flux of 0.6 mumol/min for the liver as a whole. Analysis of the distribution of radioactive leucine among intracellular and extracellular free pools and protein-bound form at times of 30 s to 5 min after injection is consistent with operation of a concentrative or uphill transport system accounting for 40% of uptake at normal plasma concentration. Saturation of uptake occurs at increasing leucine loads; calculation of intracellular pool dilution from protein synthesis data indicates that 20-30% of liver intracellular space is occupied by incoming leucine during the first 2 min after portal injection. Maximal flux (V max) is 4.1 mumol/min per 7-g liver as a whole with Km = 0.6 mM. Competitive inhibition of leucine uptake is afforded by isoleucine and phenylalanine with lesser effects by aspartic acid, cysteine, methionine, threonine, tyrosine, and valine. No effect is observed with alanine, glycine, histidine, lysine, and proline.  相似文献   

19.
The influx and efflux of alanine and other amino acids was studied in trophozoites of Giardia intestinalis. Transport of L-[2,3-3H]alanine was used as the index of influx. On the basis of the competition of L-[2,3-3H]alanine uptake by analogues of alanine, the substrate specificity of the alanine transporter was determined. The transporter is an antiport. Influx of alanine or those analogues which inhibited alanine influx caused the efflux of intracellular alanine and a number of amino acids structurally related to alanine. Amino acids unrelated to alanine, such as glutamate, effluxed at a slow rate, and the efflux was not stimulated by extracellular alanine or alanine analogues. However, there was a subset of intracellular amino acids, the alanine subset comprising alanine, serine, glycine, and threonine, the efflux of which was stimulated by external alanine or alanine analogues. Direct measurement by amino acid analysis demonstrated intracellular accumulation of alanine analogues concomitant with the efflux of the alanine subset. These data indicate unequivocal evidence of exchange of intracellular alanine with extracellular alanine analogues, with a 1:1 molar stoichiometry. This is the first demonstration in G. intestinalis of the antiport function of an amino acid transporter.  相似文献   

20.
A total of 357 plasma amino acid profiles from 93 surgical patients were statistically analyzed in relation to the changes in arterial ketone body ratio, which reflects the hepatic mitochondrial redox state. When the arterial ketone body ratio was above 0.7, all plasma amino acid levels were within the normal range. When it was between 0.7 and 0.4, plasma levels of aspartate, glutamate, valine, isoleucine, leucine, ornithine, and arginine decreased, and plasma levels of tyrosine, phenylalanine, proline, and methionine increased. Furthermore, when it was below 0.4, almost all plasma amino acids markedly increased. These results indicate that arterial ketone body ratio accurately reflects the alterations in plasma amino acid profile, and can serve as an indicator for providing nutritional support by amino acid supplement in surgical patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号