首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 62 毫秒
1.
在Gleeble-1500热模拟机上对Ti-6Al-2Zr-1Mo-1V钛合金铸态材料进行了恒温和恒应变速率下的热压缩变形试验.在试验温度700~1000℃、应变速率5×10-3~50 s-1条件下,测试了材料的稳态变形抗力,并绘制成lnσ-lnε和lnσ-1/T关系曲线,从而确定合金的变形激活能Q和应力指数n.观察热变形后的组织表明:合金在800C热变形为不完全动态再结晶组织,变形机制受动态回复与动态再结晶共同影响;900 C为完全动态再结晶组织,变形机制完全受动态再结晶影响.合金在900 C以上具有较好的工艺塑性,并且应力指数n随变形温度的升高而减小.  相似文献   

2.
对影响Ti6Al4V合金超塑成形的因素,如晶粒尺寸、变形温度、应变、相变、微量元素的添加以及合金超塑成形的研究应用现状进行了综述.介绍了Ti6Al4V合金超塑性的实际应用,如等温锻造、超塑性与扩散连接的结合、气压成形、超塑胀形及轴向加载复合成形以及超塑成形今后的发展趋势等.  相似文献   

3.
对影响Ti6Al4V合金超塑成形的因素,如晶粒尺寸、变形温度、应变、相变、微量元素的添加以及合金超塑成形的研究应用现状进行了综述.介绍了Ti6Al4V合金超塑性的实际应用,如等温锻造、超塑性与扩散连接的结合、气压成形、超塑胀形及轴向加载复合成形以及超塑成形今后的发展趋势等.  相似文献   

4.
利用Gleeble热模拟机研究了铸态Ti-44Al-4Nb-(Mo,Cr,B)合金在1 050~1 200℃、0.005~0.5s-1下的热变形行为,并基于所得的真应力-真应变曲线绘制了热加工图。另外,通过透射电子显微镜(TEM)研究了片层和γ相的变形机制。结果表明,该合金是典型的应变速率和温度敏感材料,它的热加工性能较好,在1 100、1 150℃温度下的低应变速率区域以及1 200℃温度下高应变速率区域比较适合热加工。再结晶是流变软化的主要原因,较高的变形温度和较低应变速率有利于再结晶晶粒的进行。片层结构的变形机制为片层扭折,而γ相的主要变形机制为位错滑移和变形孪晶。  相似文献   

5.
6.
Nb-10Zr合金可作为特种薄膜功能材料应用于太阳能行业。深入理解Nb-10Zr合金的热变形行为是实现该应用的前提,然而国内目前围绕该合金热加工过程的材料加工性能相关研究十分匮乏。建立热材料加工图可实现描述指定条件下的材料可加工性,明确合金的变形窗口,指导材料加工工艺的制定和优化。选用均匀化处理后的电铸熔炼铸锭Nb-10Zr合金,采用热模拟试验机开展了热模拟压缩试验,并基于动态材料模型,通过对应变速率敏感系数m、功率耗散系数η和失稳系数ξ的数据分析,建立了材料不同温度和应变速率条件下的流变稳态区和非稳态区的热加工图。同时,通过微观组织观察,分析和验证了加工图的准确性。研究结果表明,Nb-10Zr合金铸锭在1 300 ℃下经24 h均匀化处理后,未出现Zr元素偏聚所形成的缺陷,也未见裂纹、气孔、疏松和夹渣等其他类型的缺陷。铸态组织中存在粗大晶粒和细小晶粒,晶粒尺寸分别为 500—800 μm和 20—30 μm。在应变为0.4和0.6条件下,Nb-10Zr合金存在2个合理的热加工窗口,即变形温度1 060—1 100 ℃和应变速率0.01—0.04 s-1,以及变形温度1 080—1 100 ℃和应变速率0.3—1 s-1。在不同变形条件下,变形后的Nb-10Zr合金均获得了细小的动态再结晶组织。在温度1 100 ℃和应变速率0.01 s-1下,合金晶粒尺寸为80—100 μm;而在温度1 100 ℃及应变速率1 s-1下,合金晶粒尺寸为40—60 μm。此外,通过不同工艺制备参数下合金组织形貌的观察,证明了所确定加工窗口的合理性 。本研究为Nb-10Zr生产过程中的工艺选择和工艺参数的优化提供了理论指导。  相似文献   

7.
为了探究激光选区熔化(Selective laser melting,SLM)Ti-12Mo-6Zr-2Fe(TMZF)合金的微观组织与力学性能,采用TMZF合金粉进行激光增材制造,研究了铸造TMZF合金与SLM TMZF合金试样微观组织与力学性能的差异.结合X射线衍射仪(XRD)、金相显微镜(OM)、扫描电子显微镜(SEM)及能谱分析(EDS)等材料表征手段,对TMZF合金试样的物相分布、微观组织结构、元素分布及试样拉伸断口进行了对比分析.结果表明:SLM TMZF试样与铸造TMZF试样的组织中都含有大量β-Ti组织;SLM TMZF试样的平均显微硬度为355.7±5.64 HV0.2,铸造TMZF试样的平均显微硬度为354.8±5.44 HV0.2;SLM TMZF试样的屈服强度为934±4.1 MPa、抗拉强度为993±2.4 MPa、延伸率为14.4±0.6 %,而铸造 TMZF试样的屈服强度为1052±12.1 MPa、抗拉强度为1055±11.7 MPa、延伸率为10.4±1.2 %.为进一步探究激光选区熔化制备TMZF的后处理打下基础.   相似文献   

8.
采用标准C(T)试样测定热等静压Ti-6Al-4V钛合金在应力比R=0.1、0.4和0.7的条件下疲劳裂纹扩展速率,获得相应条件下的疲劳裂纹扩展数据,绘制了对应的裂纹扩展速率与应力场强度因子(da/dN-ΔK)关系曲线,并结合疲劳裂纹扩展路径和断口形貌分析探究应力比R对热等静压Ti-6Al-4V钛合金裂纹扩展速率的影响。结果表明,随着应力比R的增大,裂纹扩展门槛值ΔKtn减小。相同ΔK下,裂纹扩展速率da/dN随应力比R一同增大,致使da/dN-ΔK关系曲线向左上移动;裂纹能够穿过等轴晶α相和纤薄的α片层结构呈直线型扩展,遇到较厚的α片层结构时,裂纹偏转并沿原始α片层方向继续扩展,最终发生断裂;断口由预裂区、稳态扩展区和快速断裂区构成,分别对应于疲劳裂纹扩展的三个阶段。  相似文献   

9.
谢志平  权变利 《煤矿机械》2011,32(8):126-128
电火花加工Ti-6Al-4V是多目标工艺参数优化问题。采用信噪比的分析方法分析正交试验结果,得出加工工艺参数对材料去除率和电极损耗率工艺目标的影响规律。影响其工艺性能的主要加工工艺参数有电流、间隙电压、脉冲宽度和工作因子。试验结果表明采用参数设计中的信噪比方法,能更加准确地反映具有强干扰特性的电火花加工Ti-6Al-4V过程中参数对加工工艺目标的影响程度。  相似文献   

10.
采用X射线衍射仪、金相显微镜、分离式霍普金森杆和扫描电镜等手段研究了Ti-20Zr-20Al钛合金在动态压缩条件下的微观结构、力学性能和断裂机制。结果表明,Ti-20Zr-20Al铸态合金由Zr基体相和TiAl/Ti3Al针状相组成;随着应变率增加,合金的抗压强度增加,失效应变显著增加;Ti-20Zr-20Al合金的断裂机制为解理断裂;随着应变率增加,试验压缩断裂后碎片总数增大,平均粒径减小。采用DID模型模拟的材料碎片尺度与实验结果比较吻合,Grady模型与实验结果的偏差较大。  相似文献   

11.
TiAl合金具有优异的高温性能,但在高温下的抗氧化性和耐腐蚀性较差,从而阻碍了其在工程中的实际应用。以Ti-48Al-2Nb-2Cr合金为研究对象,为其免受热腐蚀侵蚀,通过预氧化在其表面制备一层致密的保护膜,研究预氧化处理对Ti-48Al-2Nb-2Cr合金在Na_(2)SO_(4)(质量分数75%)+NaCl(质量分数25%)混合盐环境中的热腐蚀行为及氧化层组成和结构的影响。结果表明:经700℃氧化100 h后,预氧化试样的氧化增重仅有0.47 mg·cm^(-2);预氧化处理的Ti-48Al-2Nb-2Cr合金表面为多层氧化物结构,最外层形成了连续、致密的TiO_(2)层,并且氧化层与基体具有良好的结合力,从而有效阻止了熔盐向合金内部扩散,进而显著提高了合金的抗热腐蚀性能。因此,通过预氧化的方式可提高TiAl合金表面的抗热腐蚀性能。  相似文献   

12.
谢志平  苏明  郑继明  权变利 《煤矿机械》2012,33(11):134-136
电火花加工Ti-6Al-4V是多目标工艺参数优化问题,影响其工艺指标的主要工艺参数有电流、间隙电压、脉冲宽度和工作因子。以材料去除率、电极损耗率和表面粗糙度为工艺指标项目,采用信噪比和灰色关联度分析方法分析正交试验结果,获得最优的工艺参数组合。试验结果表明,结合信噪比和灰色关联度分析方法,极大地简化多目标优化问题,提高Ti-6Al-4V的电火花加工质量。  相似文献   

13.
研究两种不同加工状态下的Ta W12合金在室温下强度、塑性随退火温度变化的规律,采用金相显微镜分析微观组织,确定两种加工状态下合金的再结晶退火温度。结果表明,变形率为85%的Ta W12合金经1 430℃、2 h退火能够发生完全再结晶。变形率增大至95%,再结晶退火温度降低至1 380℃。  相似文献   

14.
本文探索了通过对TC4钛合金等轴组织形貌与力学性能的关系,并通过进行热模拟压缩试验,研究了变形速率、变形温度、变形量等参数对TC4钛合金盘条组织和性能的影响规律。通过热加工图的绘制,为对TC4钛合金在中低温区(500℃~~800℃),以不同应变速率进行了热变形实验研究。通过对真应力-真应变分曲线的分析,探索了相应的软化机制,确定了低温区的热变形激活能,建立了流变应力本构关系,探索了峰值应力与温度和变形速率之间的函数关系,为TC4钛合金棒丝材的加工控制了提供理论基础,对金相组织的观察表面,显微组织特征和热加工图规律基本相符。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号