首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The specific inhibitor of the gamma-aminobutyric acid (GABA) carrier, NNC-711, (1-[(2-diphenylmethylene)amino]oxyethyl)- 1,2,5,6-tetrahydro-3-pyridine-carboxylic acid hydrochloride, blocks the Ca(2+)-independent release of [3H]GABA from rat brain synaptosomes induced by 50 mM K+ depolarization. Thus, in the presence of this inhibitor, it was possible to study the Ca(2+)-dependent release of [3H]GABA in the total absence of carrier-mediated release. Reversal of the Na+/Ca2+ exchanger was used to increase the intracellular free Ca2+ concentration ([Ca2+]i) to test whether an increase in [Ca2+]i alone is sufficient to induce exocytosis in the absence of depolarization. We found that the [Ca2+]i may rise to values above 400 nM, as a result of Na+/Ca2+ exchange, without inducing release of [3H]GABA, but subsequent K+ depolarization immediately induced [3H]GABA release. Thus, a rise of only a few nanomolar Ca2+ in the cytoplasm induced by 50 mM K+ depolarization, after loading the synaptosomes with Ca2+ by Na+/Ca2+ exchange, induced exocytotic [3H]GABA release, whereas the rise in cytoplasmic [Ca2+] caused by reversal of the Na+/Ca2+ exchanger was insufficient to induce exocytosis, although the value for [Ca2+]i attained was higher than that required for exocytosis induced by K+ depolarization. The voltage-dependent Ca2+ entry due to K+ depolarization, after maximal Ca2+ loading of the synaptosomes by Na+/Ca2+ exchange, and the consequent [3H]GABA release could be blocked by 50 microM verapamil. Although preloading the synaptosomes with Ca2+ by Na+/Ca2+ exchange did not cause [3H]GABA release under any conditions studied, the rise in cytoplasmic [Ca2+] due to Na+/Ca2+ exchange increased the sensitivity to external Ca2+ of the exocytotic release of [3H]GABA induced by subsequent K+ depolarization. Thus, our results show that the vesicular release of [3H]GABA is rather insensitive to bulk cytoplasmic [Ca2+] and are compatible with the view that GABA exocytosis is triggered very effectively by Ca2+ entry through Ca2+ channels near the active zones.  相似文献   

2.
We investigated the effects of pregnenolone sulfate (PS) on the [Ca2+]i increase induced by gamma-aminobutyric acid (GABA) and N-methyl-D-aspartate (NMDA) using fluorescence imaging. PS inhibited the 50 microM GABA-induced increase in [Ca2+]i in a dose-dependent manner with an IC50 of 30 microM. The inhibitory effect of PS was apparent within 5 min and was in a non-competitive manner, suggesting that PS may act directly to the membrane level but indirectly to the GABA binding sites. Our previous study has already shown that the GABA-induced Ca2+ increase involves GABAA receptors and the similar pathway to a high K(+)-induced Ca2+ response (Takebayashi et al., 1996). Because 50 microM of PS could not inhibit a 25 mM K(+)-induced Ca2+ increase, it seems likely that the site of the inhibitory action of PS on the GABA-induced Ca2+ increase may be independent of the pathway of the high K(+)-induced Ca2+ response, but rather at GABAA receptor complex. In contrast, PS potentiated the 50 microM NMDA-induced increase in [Ca2+]i in a dose-dependent manner. The magnitude of the NMDA response was approximately doubled in the presence of 100 microM of PS. However, PS did not affect the acetylcholine(Ach)-induced increase in [Ca2+]i. Furthermore, corticosterone had little effect on the GABA- and NMDA-induced Ca2+ increases, indicating that the alteration of the Ca2+ response is specific for PS. In conclusion, it is suggested that PS modulates differentially [Ca2+]i increase induced by GABA and NMDA.  相似文献   

3.
Macroscopic and unitary currents through Ca(2+)-activated Cl- channels were examined in enzymatically isolated guinea-pig hepatocytes using whole-cell, excised outside-out and inside-out configurations of the patch-clamp technique. When K+ conductances were blocked and the intracellular Ca2+ concentration ([Ca2+]i) was set at 1 microM (pCa = 6), membrane currents were observed under whole-cell voltage-clamp conditions. The reversal potential of the current shifted by approximately 60 mV per 10-fold change in the external Cl- concentration. In addition, the current did not appear when Cl- was omitted from the internal and external solutions, indicating that the current was Cl- selective. The current was activated by increasing [Ca2+]i and was inactivated in Ca(2+)-free, 5 mM EGTA internal solution (pCa > 9). The current was inhibited by bath application of 9-anthracenecarboxylic acid (9-AC) and 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid (DIDS) in a voltage-dependent manner. In single channel recordings from outside-out patches, unitary current activity was observed, whose averaged slope conductance was 7.4 +/- 0.5 pS (n = 18). The single channel activity responded to extracellular Cl- changes as expected for a Cl- channel current. The open time distribution was best described by a single exponential function with mean open lifetime of 97.6 +/- 10.4 ms (n = 11), while at least two exponentials were required to fit the closed time distributions with a time constant for the fast component of 21.5 +/- 2.8 ms (n = 11) and that for the slow component of 411.9 +/- 52.0 ms (n = 11). In excised inside-out patch recordings, channel open probability was sensitive to [Ca2+]i. The relationship between [Ca2+]i and channel activity was fitted by the Hill equation with a Hill coefficient of 3.4 and the half-maximal activation was 0.48 microM. These results suggest that guinea-pig hepatocytes possess Ca(2+)-activated Cl- channels.  相似文献   

4.
The mechanisms, by which the P2 receptor agonists adenosine 5'-triphosphate (ATP) and uridine 5'-triphosphate (UTP) evoke an increase in the free cytosolic calcium concentration ([Ca2+]i) and in intracellular pH (pHi), have been investigated in Ehrlich ascites tumor cells. The increase in [Ca2+]i evoked by ATP or UTP is abolished after depletion of intracellular Ca2+ stores with thapsigargin in Ca2+-free medium, and is inhibited by U73122, an inhibitor of phospholipase C (PLC), indicating that the increase in [Ca2+]i is primarily due to release from intracellular, Ins(1,4,5)P3-sensitive Ca2+ stores. ATP also activates a capacitative Ca2+-entry pathway. ATP as well as UTP evokes a biphasic change in pHi, consisting of an initial acidification followed by alkalinization. Suramin and 4,4'-diisothiocyano-2,2'-stilbene-disulfonic acid (DIDS) inhibit the biphasic change in pHi, apparently by acting as antagonists at P2 receptors. The alkalinization evoked by the P2 receptor agonists is found to be due to activation of a 5'-(N-ethyl-N-isopropyl)amiloride (EIPA)-sensitive Na+/H+ exchanger. ATP and UTP elicit rapid cell shrinkage, presumably due to activation of Ca2+ sensitive K+ and Cl- efflux pathways. Preventing cell shrinkage, either by incubating the cells at high extracellular K+ concentration, or by adding the K+-channel blocker, charybdotoxin, does not affect the increase in [Ca2+]i, but abolishes the activation of the Na+/H+ exchanger, indicating that activation of the Na+/H+ exchanger is secondary to the Ca2+-induced cell shrinkage.  相似文献   

5.
The progesterone-initiated human sperm acrosome reaction (AR) requires a rise in intracellular Ca2+ ([Ca2+]i), extracellular Cl- and apparently increased Cl- flux through a unique steroid receptor/Cl- channel resembling but not identical to a GABA(A)/Cl- channel complex. The present study uses fura-2 loaded human sperm, GABA(A)/Cl- channel blockers (picrotoxin and pregnenolone sulfate) and Cl(-)-containing and Cl(-)-deficient media to determine whether the progesterone-mediated increase in [Ca2+]i is dependent on the Cl- requirement. There was no significant difference between the progesterone-mediated increases of [Ca2+]i obtained in Cl(-)-containing and Cl(-)-deficient media. Picrotoxin did not significantly inhibit the progesterone-mediated increase in [Ca2+]i, and pregnenolone sulfate increased [Ca2+]i to the same extent as progesterone. These results strongly suggest that the increase in [Ca2+]i essential to the AR is independent of the AR Cl- requirement and could be explained by the existence of two different sperm plasma membrane progesterone receptors.  相似文献   

6.
In the pancreatic beta-cell, glucose-induced membrane depolarization promotes opening of voltage-gated L-type Ca2+ channels, an increase in cytoplasmic free Ca2+ concentration ([Ca2+]i), and exocytosis of insulin. Inhibition of Na+,K+-ATPase activity by ouabain leads to beta-cell membrane depolarization and Ca2+ influx. Because glucose-induced beta-cell membrane depolarization cannot be attributed solely to closure of ATP-regulated K+ channels, we investigated whether glucose regulates other transport proteins, such as the Na+,K+-ATPase. Glucose inhibited Na+,K+-ATPase activity in single pancreatic islets and intact beta-cells. This effect was reversible and required glucose metabolism. The inhibitory action of glucose was blocked by pretreatment of the islets with a selective inhibitor of a Ca2+-independent phospholipase A2. Arachidonic acid, the hydrolytic product of this phospholipase A2, also inhibited Na+, K+-ATPase activity. This effect, like that of glucose, was blocked by nordihydroguaiaretic acid, a selective inhibitor of the lipooxygenase metabolic pathway, but not by inhibitors of the cyclooxygenase or cytochrome P450-monooxygenase pathways. The lipooxygenase product 12(S)-HETE (12-S-hydroxyeicosatetranoic acid) inhibited Na+,K+-ATPase activity, and this effect, as well as that of glucose, was blocked by bisindolylmaleimide, a specific protein kinase C inhibitor. Moreover, glucose increased the state of alpha-subunit phosphorylation by a protein kinase C-dependent process. These results demonstrate that glucose inhibits Na+, K+-ATPase activity in beta-cells by activating a distinct intracellular signaling network. Inhibition of Na+,K+-ATPase activity may thus be part of the mechanisms whereby glucose promotes membrane depolarization, an increase in [Ca2+]i, and thereby insulin secretion in the pancreatic beta-cell.  相似文献   

7.
P2U/2Y-receptors elicit multiple signaling in Madin-Darby canine kidney (MDCK) cells, including a transient increase of [Ca2+]i, activation of phospholipases C (PLC) and A2 (PLA2), protein kinase C (PKC) and mitogen-activated protein kinase (MAPK). This study examines the involvement of these signaling pathways in the inhibition of Na+,K+,Cl- cotransport in MDCK cells by ATP. The level of ATP-induced inhibition of this carrier ( approximately 50% of control values) was insensitive to cholera and pertussis toxins, to the PKC inhibitor calphostin C, to the cyclic nucleotide-dependent protein kinase inhibitors, H-89 and H-8 as well as to the inhibitor of serine-threonine type 1 and 2A phosphoprotein phosphatases okadaic acid. ATP led to a transient increase of [Ca2+]i that was abolished by a chelator of Ca2+i, BAPTA. However, neither BAPTA nor the Ca2+ ionophore A231287, or an inhibitor of endoplasmic reticulum Ca2+-pump, thapsigargin, modified ATP-induced inhibition of Na+,K+, Cl- cotransport. An inhibitor of PLC, U73122, and an inhibitor of MAPK kinase (MEK), PD98059, blocked ATP-induced inositol-1,4, 5-triphosphate production and MAPK phosphorylation, respectively. However, these compounds did not modify the effect of ATP on Na+,K+, Cl- cotransport activity. Inhibitors of PLA2 (AACOCF3), cycloxygenase (indomethacin) and lypoxygenase (NDGA) as well as exogenous arachidonic acid also did not affect ATP-induced inhibition of Na+,K+,Cl- cotransport. Inhibition of the carrier by ATP persisted in the presence of inhibitors of epithelial Na+ channels (amiloride), Cl- channels (NPPB) and Na+/H+ exchanger (EIPA) and was insensitive to cell volume modulation in anisosmotic media and to depletion of cells with monovalent ions, thus ruling out the role of other ion transporters in purinoceptor-induced inhibition of Na+,K+,Cl- cotransport. Our data demonstrate that none of the known purinoceptor-stimulated signaling pathways mediate ATP-induced inhibition of Na+,K+,Cl- cotransport and suggest the presence of a novel P2-receptor-coupled signaling mechanism.  相似文献   

8.
We have characterized two different types of Cl- currents in calf pulmonary artery endothelial (CPAE) cells by using a combined patch-clamp and Fura-2 microfluorescence technique to measure simultaneously ionic currents and the intracellular Ca2+ concentration, [Ca2+]i. Exposure of CPAE cells to 28% hypotonic solution induces cell swelling without a change in membrane capacitance and [Ca2+]i, and concomitantly activates a current. This current, I(Cl, vol), is closely correlated with the changes in cell volume and shows a modest outward rectification. It slowly inactivates at potentials more positive than +60 mV but is time- and voltage-independent at other potentials. Increase in [Ca2+]i by different maneuvers, such as application of vasoactive agonists (ATP), ionomycin, or loading of the cells directly with Ca2+ also activates a Cl- current, I(Cl, Ca). This current slowly activates at positive potentials, inactivates quickly at negative potentials and shows strong outward rectification. A time-independent component of the current activated by elevation of [Ca2+]i alone can be inhibited by cell shrinking by exposing the cells to hypertonic solution, indicating that an increase in [Ca2+]i also co-activates I(Cl, vol). Forskolin or cAMP never activated a current in CPAE cells, which indicates the lack of cAMP-activated channels in these cells. There is also no evidence for the existence of voltage-gated Cl- channels in resting, nonstimulated cells. Challenging a cell with elevated [Ca2+]i and hypotonic solutions activated I(Cl, vol) on top of I(Cl, Ca), suggesting that I(Cl, Ca) and I(Cl, vol) are different channels. We conclude that CPAE cells do not express voltage-gated (ClC-type) or cAMP-gated (CFTR-type) Cl- channels, but activate large Cl- currents after volume (mechanical?) or chemical (Ca2+) stimulation.  相似文献   

9.
By using the Ca(2+)-sensitive indictor Fura-2/AM, the cytosolic Ca2+ levels [Ca2+]i were measured in type 1 astrocytes in rat cortical astroglial primary cultures, after stimulation with GABA, muscimol (GABAA agonist), or baclofen (GABAB agonist). We report the first evidence that stimulation of both GABAA and GABAB receptors evokes Ca2+ transients in type I astrocytes. Two types of Ca2+ responses were seen: the single-phase curve, which was the most common, and the biphasic, which consisted of an initial rise that persisted at the maximal or submaximal level. Both types of Ca2+ responses appeared with some latency. The responses were obtained in astrocytes grown for 12-16 days in culture and the response frequencies for all three agonists were 18% of the total number of examined cells. However, when the astrocytes were grown in a mixed astroglial/neuronal culture the response frequencies for all three agonists increased to 35% of the total number of examined cells. In some cells, the responses after GABA stimulation were blocked to baseline levels after exposure to bicuculline (GABAA antagonist). In other cells, bicuculline only slightly reduced the GABA-evoked responses, and the addition of phaclofen (GABAB antagonist) did not potentiate this partial inhibition. However, the muscimol-evoked rises in [Ca2+]i were completely inhibited after exposure to bicuculline, while the responses after baclofen could only be partly blocked by phaclofen. GABA evoked rises in [Ca2+]i which alternatively were inhibited (mostly) or persisted in Ca(2+)-free buffer. The rises in [Ca2+]i persisted, but were reduced, in Ca(2+)-free buffer after stimulation with muscimol, but were inhibited after baclofen stimulation. The GABA uptake blockers guvacine, 4,5,6,7-tetrahydroisoxazolo(4,5-c)pyridin-3-ol and nipecotic acid were also able to reduce the GABA-evoked rises in [Ca2+]i. However, the L-type Ca2+ channel antagonist nifedipine failed to influence on the GABA-evoked Ca2+ transients. The results suggest that type 1 astrocytes in primary culture express GABA receptors which can elevate [Ca2+]i directly or indirectly via Ca2+ channels and/or via release from internal Ca2+ stores. The results also suggest that GABA can have intracellular Ca(2+)-mobilizing sites since the GABA-evoked responses were reduced after incubation with GABA uptake blockers.  相似文献   

10.
A Ca2+-activated (ICl,Ca) and a swelling-activated anion current (ICl,vol) were investigated in Ehrlich ascites tumor cells using the whole cell patch clamp technique. Large, outwardly rectifying currents were activated by an increase in the free intracellular calcium concentration ([Ca2+]i), or by hypotonic exposure of the cells, respectively. The reversal potential of both currents was dependent on the extracellular Cl- concentration. ICl,Ca current density increased with increasing [Ca2+]i, and this current was abolished by lowering [Ca2+]i to <1 nm using 1,2-bis-(o-aminophenoxy)ethane-N,N,N',N'-tetra-acetic acid (BAPTA). In contrast, activation of ICl,vol did not require an increase in [Ca2+]i. The kinetics of ICl,Ca and ICl,vol were different: at depolarized potentials, ICl,Ca as activated in a [Ca2+]i- and voltage-dependent manner, while at hyperpolarized potentials, the current was deactivated. In contrast, ICl,vol exhibited time- and voltage-dependent deactivation at depolarized potentials and reactivation at hyperpolarized potentials. The deactivation of ICl, vol was dependent on the extracellular Mg2+ concentration. The anion permeability sequence for both currents was I- > Cl- > gluconate. ICl,Ca was inhibited by niflumic acid (100 micron), 5-Nitro-2-(3-phenylpropylamino)benzoic acid (NPPB, 100 micron) and 4, 4'-diisothiocyano-2,2'-stilbenedisulfonic acid (DIDS, 100 micron), niflumic acid being the most potent inhibitor. In contrast, ICl,vol was unaffected by niflumic acid (100 micron), but abolished by tamoxifen (10 micron). Thus, in Ehrlich cells, separate chloride currents, ICl,Ca and ICl,vol, are activated by an increase in [Ca2+]i and by cell swelling, respectively.  相似文献   

11.
We investigated changes in whole-cell currents, cell volume, and intracellular calcium concentration ([Ca2+]i) during hypotonic stimulation in whole-cell clamped cultured amphibian renal cells (A6 cells). Upon being exposed to hypotonic solution (80% osmolality), the A6 cells swelled and peaked in the first 5 min, which was followed by a progressive decrease in cell volume termed regulatory volume decrease (RVD). Following the cell swelling, there were large increases in both outward- and inward-currents, which seemed to be carried by K+ efflux and Cl- efflux, respectively. A K+ channel blocker (TEA or quinine) or a Cl- channel blocker (NPPB or SITS) significantly inhibited both currents and RVD, suggesting that the inward- and outward-currents are highly correlated with each other and essential to RVD. Hypotonic stimulation also induced a transient [Ca2+]i increase, of which the time course was essentially similar to that of the currents. When internal and external Ca2+ were deprived to eliminate the Ca2+ transient increase, whole-cell currents and RVD were strongly inhibited. On the other hand, channel blockers TEA and NPPB, which inhibited whole-cell currents and RVD, did not inhibit the [Ca2+]i increase. It is concluded that hypotonic stimulation to A6 cells first induces cell swelling, which is followed by [Ca2+]i increase that leads to the coactivation of K+ and Cl- channels. This coactivation may accelerate K+ and Cl- effluxes, resulting in RVD.  相似文献   

12.
The aim was to investigate in detail the influence of intracellular pH (pHi) and intracellular Ca2+ concentration ([Ca2+]i) on apoptosis in HL-60 human promyelocytic leukaemia cells. The pHi was controlled by changing the pH of media as well as by interfering with the pHi regulatory mechanisms with 3-amino-6-chloro-5-(1-homopiperidyl)-N-(diaminomethylene) pyrazincarboxamide (HMA; an inhibitor of Na+/H+ antiport), 4-diiosothiocyanatostilbene-2,2'disulfonic acid, (DIDS; an inhibitor of Na(+)-dependent HCO3-/Cl- exchange) and nigericin (a K+ ionophore). The [Ca2+]i was increased with ionomycin, a Ca2+ ionophore. The apoptosis of HL-60 cells was measured with conventional agarose gel electrophoresis for DNA fragmentation and also with the release of 3H from 3H-thymidine-labelled DNA. Based on the magnitude of DNA fragmentation and 3H release at different pHi, it was shown that apoptosis occurred in HL-60 cells when the pHi was lowered from normal pHi of 7.4 to about 7.2-6.7 with a peak increase at pHi 6.8-6.9. Addition of 4 microM ionomycin to RPMI 1640 medium, which contained 615 microM Ca2+, elevated the apoptosis in the cells. Such an increase in apoptosis by ionomycin in HL-60 cells appeared to result from both an increase in [Ca2+]i and from a decline in pHi. The results indicate that the acidic intratumour environment may greatly affect the response of neoplastic tissues to hyperthermia, radiation and chemotherapeutic drugs which cause apoptosis.  相似文献   

13.
Using native plasma membrane vesicle suspensions from the rat cerebral cortex under conditions designed to alter intravesicular [Ca2+], we found that Ca2+ induced 47 +/- 5% more influx of [3H]GABA, [3H]D-aspartate and [3H]glycine at 37 degrees C with half-times 1.7 +/- 0.5, 1.3 +/- 0.4 and 1.3 +/- 0.4 min, respectively. We labelled GABA transporter sites with the uptake inhibitor, [3H]-(R,S)-N-[4,4-bis(3-methyl-2-thienyl)but-3-en-1-yl]nipecotic acid and found that Ca2+ induced a partial dissociation of the bound inhibitor from GABA transporter sites with a similar half-time. By means of rapid kinetic techniques applied to native plasma membrane vesicle suspensions, containing synaptic vesicles stained with the amphipathic fluorescent styryl membrane probe N-(3-triethylammoniumpropyl)-4-[4-(dibutylamino)styryl]pyrid inium dibromide, we have measured the progress of the release and reuptake of synaptic vesicles in response to Ca2+ and high-[K+] depolarization in the 0.0004-100 s range of time. Synaptic vesicle exocytosis, strongly influenced by external [Ca2+], appeared with the kinetics accelerated by depolarization. These results are consistent with the potential involvement of Ca2+ in taking low-affinity transporters to the plasma membrane surface via exocytosis.  相似文献   

14.
1. Simultaneous recordings of tension and [Ca2+]i during NANC-mediated relaxation were made in the rat anococcygeus muscle under various conditions. 2. In muscles precontracted with guanethidine, nitrergic stimulations at 2 Hz produced a rapid decrease in both the tension and [Ca2+]i. 3. The nitric oxide synthase inhibitor, NG-nitro-L-Arginine (NOLA, 100 mumol/L) completely abolished the decreases in the [Ca2+]i and force response of the NANC-mediated relaxation. 4. Noradrenergic-mediated contractions elicited by electrical field stimulation were potentiated by the addition of NOLA. In the absence of NOLA, the motor responses were larger in magnitude at 10 Hz stimulation than at 2 Hz. After NOLA, both the force response and the associated rise in [Ca2+]i were substantially increased in comparison to the control stimulations. Proportionately the potentiation of the 2 Hz response was of a far greater magnitude than that of the 10 Hz response. 5. The guanylate cyclase inhibitor methylene blue (10 mumol/L), partially inhibited the force and [Ca2+]i response of the NANC relaxation. 6. Following exposure of the muscles to the sarcoplasmic reticulum Ca(2+)-ATPase inhibitor, cyclopiazonic acid, (10 mumol/L) the responses to NANC stimulation were inhibited. The attenuated relaxation response displayed a bi-phasic timecourse and the Ca2+ change in comparison to that of the control was markedly smaller. In some cases, a relaxation was observed with no detectable change in the [Ca2+]i. 7. The results suggest that part of the relaxation response observed with NANC-mediated relaxation in the rat anococcygeus is dependent on Ca2+ sequestration into the sarcoplasmic reticulum. However, other Ca2+ lowering mechanisms and possible Ca2+ independent mechanisms may also contribute to the NANC relaxation response.  相似文献   

15.
The aims of this study were to characterize the routes of influx of the K+ congener, Rb+, into cardiac cells in the perfused rat heart and to evaluate their links to the intracellular Na+ concentration ([Na+]i) using 87Rb and 23Na nuclear magnetic resonance (NMR) spectroscopy. The rate constant for Rb+ equilibration in the extracellular space was 8.5 times higher than that for the intracellular space. The sensitivity of the rate of Rb+ accumulation in the intracellular space of the perfused rat heart to the inhibitors of the K+ and Na+ transport systems has been analyzed. The Rb+ influx rates were measured in both beating and arrested hearts: both procaine (5 mmol/L) and lidocaine (1 mmol/L) halved the Rb+ influx rate. In procaine-arrested hearts, the Na+,K(+)-ATPase inhibitor ouabain (0.6 mmol/L) decreased Rb+ influx by 76 +/- 24% relative to that observed in untreated but arrested hearts. Rb+ uptake was insensitive to the K+ channel blocker 4-aminopyridine (1 mmol/L). The inhibitor of Na+/K+/2 Cl- cotransport bumetanide (30 mumol/L) decreased Rb+ uptake only slightly (by 9 +/- 8%). Rb+ uptake was dependent on [Na+]i: it increased by 58 +/- 34% when [Na+]i was increased with the Na+ ionophore monensin (1 mumol/L) and decreased by 48 +/- 9% when [Na+]i was decreased by the Na+ channel blockers procaine and lidocaine. Dimethylamiloride (15 to 20 mumol/L), an inhibitor of the Na+/H+ exchanger, slightly reduced [Na+]i and Rb+ entry into the cardiomyocytes (by 15 +/- 5%). 31P NMR spectroscopy was used to monitor the energetic state and intracellular pH (pHi) in a parallel series of hearts. Treatment of the hearts with lidocaine, 4-aminopyridine, dimethylamiloride, or bumetanide for 15 to 20 minutes at the same concentrations as used for the Rb+ and Na+ experiments did not markedly affect the levels of the phosphate metabolites or pHi. These data show that under normal physiological conditions, Rb+ influx occurs mainly through Na+,K(+)-ATPase; the contribution of the Na+/K+/2 Cl- cotransporter and K+ channels to Rb+ influx is small. The correlation between Rb+ influx and [Na+bdi during infusion of drugs that affect [Na+]i indicates that, in rat hearts at 37 degrees C, Rb+ influx can serve as a measure of Na+ influx. We estimate that, at normothermia, at least 50% of the Na+ entry into beating cardiac cells is provided by the Na+ channels, with only minor contributions (< 15%) from the Na+/K+/2 Cl- cotransporter and the Na+/H+ exchanger.  相似文献   

16.
Rotavirus infection is the leading cause of severe diarrhea in infants and young children worldwide. The rotavirus nonstructural protein NSP4 acts as a viral enterotoxin to induce diarrhea and causes Ca2+-dependent transepithelial Cl- secretion in young mice. The cellular basis of this phenomenon was investigated in an in vitro cell line model for the human intestine. Intracellular calcium concentration ([Ca2+]i) was monitored in fura-2-loaded HT-29 cells using microscope-based fluorescence imaging. NSP4 (1 nM to 5 microM) induced both Ca2+ release from intracellular stores and plasmalemma Ca2+ influx. During NSP4-induced [Ca2+]i mobilization, [Na+]i homeostasis was not disrupted, demonstrating that NSP4 selectively regulated extracellular Ca2+ entry into these cells. The ED50 of the NSP4 effect on peak [Ca2+]i mobilization was 4.6 +/- 0.8 nM. Pretreatment of cells with either 2.3 x 10(-3) units/ml trypsin or 4.4 x 10(-2) units/ml chymotrypsin for 1-10 min abolished the NSP4-induced [Ca2+]i mobilization. Superfusing cells with U-73122, an inhibitor of phospholipase C, ablated the NSP4 response. NSP4 induced a rapid onset and transient stimulation of inositol 1,4,5-trisphosphate (IP3) production in an IP3-specific radioreceptor assay. Taken together, these results suggest that NSP4 mobilizes [Ca2+]i in human intestinal cells through receptor-mediated phospholipase C activation and IP3 production.  相似文献   

17.
Prior treatment of NG108-15 cells with phosphatase inhibitors including okadaic acid and calyculin A inhibited the elevation of cytosolic Ca2+ concentration ([Ca2+]i) induced by bradykinin by approximately 63%. This inhibition was dependent on the concentration of okadaic acid with an IC50 of 0.15 nM. Okadaic acid treatment only lowered the maximal response of [Ca2+]i increase and had no effect on the EC50 value for bradykinin regardless of the presence of extracellular Ca2+. Neither the capacity of 45Ca2+ accumulation within intracellular nonmitochondrial Ca2+ stores nor the magnitude of [Ca2+]i increase induced by thapsigargin was reduced by the treatment of okadaic acid. In contrast, the same phosphatase inhibitor treatment inhibited the bradykinin-evoked inositol 1,4,5-trisphosphate (IP3) generation, the Mn2+ influx, and the capacity of mitochondrial Ca2+ accumulation. Furthermore, the sensitivity of IP3 in the Ca2+ release was suppressed by okadaic acid pretreatment. Our results suggest that the reduction of bradykinin-induced [Ca2+]i rise by the promotion of protein phosphorylation was attributed to the reduced activity of phospholipase C, the decreased sensitivity to IP3, and the slowed rate of Ca2+ influx. Thus, phosphorylation plays a role in bradykinin-sensitive Ca2+ signaling cascade in NG108-15 cells.  相似文献   

18.
No.7943 (2-[2-[4-(4-nitrobenzyloxy)phenyl]ethyl]isothiourea methanesulfonate), a selective inhibitor of the Na+/Ca2+ exchanger (NCX1), has been newly synthesized. It dose-dependently inhibited Na+i-dependent 45Ca2+ uptake and Na+i-dependent [Ca2+]i increase in cardiomyocytes, smooth muscle cells, and NCX1-transfected fibroblasts (IC50 = 1.2-2.4 microM). Inhibition was observed without prior incubation with the agent and was completely reversed by washing cells with buffer for 1 min. Interestingly, No.7943 was much less potent in inhibiting Na+o-dependent 45Ca2+ efflux and Na+o-induced [Ca2+]i decline (IC50 = >30 microM), indicating that it selectively blocks the reverse mode of Na+/Ca2+ exchange in intact cells. In cardiac sarcolemmal preparations consisting mostly of inside-out vesicles, the agent inhibited Na+i-dependent 45Ca2+ uptake and Na+o-dependent 45Ca2+ efflux with similar, but slightly lower, potencies (IC50 = 5.4-13 microM). Inhibition was noncompetitive with respect to Ca2+ and Na+ in both cells and sarcolemmal vesicles. These results suggest that No.7943 primarily acts on external exchanger site(s) other than the transport sites in intact cells, although it is able to inhibit the exchanger from both sides of the plasma membrane. No.7943 at up to 10 microM does not affect many other ion transporters nor several cardiac action potential parameters. This agent at these concentrations also did not influence either diastolic [Ca2+]i or spontaneous beating in cardiomyocytes. Furthermore, No.7943 markedly inhibited Ca2+ overloading into cardiomyocytes under the Ca2+ paradox conditions. Thus, No.7943 is not only useful as a tool with which to study the transport mechanism and physiological role of the Na+/Ca2+ exchanger but also has therapeutic potential as a selective blocker of excessive Ca2+ influx mediated via the Na+/Ca2+ exchanger under pathological conditions.  相似文献   

19.
Pimobendan is a new class of inotropic drug that augments Ca2+ sensitivity and inhibits phosphodiesterase (PDE) activity in cardiomyocytes. To examine the insulinotropic effect of pimobendan in pancreatic beta-cells, which have an intracellular signaling mechanism similar to that of cardiomyocytes, we measured insulin release from rat isolated islets of Langerhans. Pimobendan augmented glucose-induced insulin release in a dose-dependent manner, but did not increase cAMP content in pancreatic islets, indicating that the PDE inhibitory effects may not be important in beta-cells. This agent increased the intracellular Ca2+ concentration ([Ca2+]i) in the presence of 30 mM K+, 16.7 mM glucose, and 200 microM diazoxide, but failed to enhance the 30 mM K+-evoked [Ca2+]i rise in the presence of 3.3 mM glucose. Insulin release evoked by 30 mM K+ in 3.3 mM glucose was augmented. Then, the direct effects of pimobendan on the Ca2+-sensitive exocytotic apparatus were examined using electrically permeabilized islets in which [Ca2+]i can be manipulated. Pimobendan (50 microM) significantly augmented insulin release at 0.32 microM Ca2+, and a lower threshold for Ca2+-induced insulin release was apparent in pimobendan-treated islets. Moreover, 1 microM KN93 (Ca2+/calmodulin-dependent protein kinase II inhibitor) significantly suppressed this augmentation. Pimobendan, therefore, enhances insulin release by directly sensitizing the intracellular Ca2+-sensitive exocytotic mechanism distal to the [Ca2+]i rise. In addition, Ca2+/calmodulin-dependent protein kinase II activation may at least in part be involved in this Ca2+ sensitization for exocytosis of insulin secretory granules.  相似文献   

20.
We have found that, during the early stages of cortical neurogenesis, both GABA and glutamate depolarize cells in the ventricular zone of rat embryonic neocortex. In the ventricular zone, glutamate acts on AMPA/kainate receptors, while GABA acts on GABAA receptors. GABA induces an inward current at resting membrane potentials, presumably owing to a high intracellular Cl- concentration maintained by furosemide-sensitive Cl- transport. GABA and glutamate also produce increases in intracellular Ca2+ in ventricular zone cells, in part through activation of voltage-gated Ca2+ channels. Furthermore, GABA and glutamate decrease the number of embryonic cortical cells synthesizing DNA. Depolarization with K+ similarly decreases DNA synthesis, suggesting that the neurotransmitters act via membrane depolarization. Applied alone, GABAA and AMPA/kainate receptor antagonists increase DNA synthesis, indicating that endogenously released amino acids influence neocortical progenitors in the cell cycle. These results demonstrate a novel role for amino acid neurotransmitters in regulating neocortical neurogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号