首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 187 毫秒
1.
用原子吸收法对大气降尘中可溶性锰、锌进行了测定,并用正交设计法对共存元素铁、铝、钙进行干扰实验。通过实验得知,3~1Omg/l铁、2~8mg/l铝、2~8mg/l钙均无干扰;锌、锰的灵敏度分别为O.02μg/ml、O.05μg/ml,变异系数分别为3.01%、1.29%;线性范围分别为0.00~0.70μg/ml、0.00~3.00μg/ml。测定方法简便,适合于环境监测。  相似文献   

2.
火焰原子吸收光谱法测定汽油中铁镍铜   总被引:4,自引:4,他引:0       下载免费PDF全文
用碘-二甲苯溶液对汽油进行氧化处理,硝酸(1+9)萃取,以原子吸收光谱法测定汽油中铁、镍、铜。铁、镍、铜的测定波长分别为248.3nm,232.0nm,324.8nm;检出限分别为0.0005μg/mL,0.0004μg/mL,0.0001μg/mL;工作曲线的线性范围为0.002~40.00μg/mL,0.001~50.00μg/mL,0.001~6.00μg/mL。对氧化剂、萃取剂的浓度及用量进行了试验,选择了最佳萃取时间。汽油中对被测元素有干扰的元素均在允许量范围内。方法用于汽油样品的分析,铁、镍、  相似文献   

3.
锰铁合金、锰硅合金、金属锰中铅、砷、钛、铜、镍、钙、镁、铝的含量决定了产品质量,以往常采用化学法或原子吸收光谱法进行测定,但存在准确度较差或测定速度不能满足要求等问题。为了实现上述元素的准确、快速测定,建立了采用电感耦合等离子体原子发射光谱法(ICP-AES)测定锰铁合金、锰硅合金和金属锰中微量铅、砷、钛、铜、镍、钙、镁、铝的方法。实验以硝酸、盐酸、氢氟酸、高氯酸分解样品,并使硅与氢氟酸反应生成四氟化硅挥发除去,试液中剩余共存元素主要有铁、锰等。实验结果表明,铁不干扰测定,通过在标准溶液系列中进行锰基体匹配消除锰基体效应的影响。以2mL高氯酸和6mL盐酸混合酸(8%)作为分析介质,可以达到最佳分析效果。在各元素校准曲线线性范围内,线性相关系数在0.9992~0.9999之间;方法中各元素的检出限在0.0001~0.0040μg/mL。实验方法用于测定锰铁合金、锰硅合金、金属锰中铅、砷、钛、铜、镍、钙、镁、铝,结果的相对标准偏差(RSD,n=11)在2.2%~9.4%;回收率在95%~105%;选择7个实验室进行了验证试验,各实验室间结果基本一致;按照实验方法测定了4个标准样品(材字-32、YSB C 28618、YSB C 26605)中铅、砷、钛、铜、镍、钙、镁、铝,结果与认定值相吻合。  相似文献   

4.
研究了原子吸收光谱法测定镝铁合金中 Ca、Mg、Ni、Cr、Mn、Cu的新方法,研究了酸介质、样品基体、共存元素的干扰,确定了实验的最佳测定条件.在优化的实验条件下,测得方法的回收率在98%~115%之间、RSD<5%,方法检出限分别为钙≤0.03μg/mL;镁≤0.005μg/mL;镍≤0.02μg/mL;铬≤0.02μg/mL;锰≤0.02μg/mL;铜≤0.02μg/mL.  相似文献   

5.
采用盐酸溶解样品,选择Co 240.72nm、Cu 324.75nm、Zn 213.86nm、Fe 248.33nm、Ca 422.67nm、Mg 202.58nm作为分析谱线,钴、铜、锌、铁选择3个像素点,钙、镁选择9个像素点,建立了连续光源原子吸收光谱法(CS-AAS)同时测定氧化镍中的钴、铜、锌、铁、钙、镁的方法。实验表明:在100mL测定液中加入2mL 200g/L氯化锶溶液,可消除测定介质(体积分数为2%的盐酸)对待测元素的影响;基体镍对测定的干扰可忽略。在优化的实验条件下,钴、铜、锌、铁、钙、镁的校准曲线相关系数均不低于0.999 0,且其方法检出限在0.002~0.092μg/mL之间。按照实验方法对氧化镍样品中钴、铜、锌、铁、钙、镁分别平行测定11次,钙和镁的测定值在0.1%~0.4%之间,其对应的相对标准偏差(RSD)不大于2%;钴、铜、锌、铁的测定值在0.003%~0.04%之间,其对应的相对标准偏差均小于10%。将实验方法应用于电真空镍光谱标准样品(该标样为氧化镍状态)中上述各元素的测定,结果与认定值基本一致。  相似文献   

6.
应用电感耦合等离子体原子发射光谱法测定金属锂中铝、金、钡、钙、钴、铬、铜、铁、铟、镁、锰、钼、镍、铅、钯、铂、锡、钛、钒、钇和锌21种微量元素。选择了元素的分析线,考察了载气流量、硝酸浓度和基体锂对测定的影响。当试液中锂和钠的浓度分别小于12 mg/mL和22μg/mL,铝、铁、铬、钙、镍、镁、铅等浓度分别小于10μg/mL时,对选择的分析线的干扰不明显。基体效应通过基体匹配和背景校正克服。试液中锂的浓度为10 mg/mL时,元素的测定范围为20~640μg/g。用本法测定-金属锂样品中的21种杂质元素,  相似文献   

7.
采用盐酸、硝酸、氢氟酸和高氯酸溶解样品,研究采用电感耦合等离子体发射光谱法测定再生铝材料中的镁、铜、钼、锰、镉、铬、铁。试验结果表明:镁、铜、铁对测定结果无影响;酸度在2%测定误差范围内,待测溶液中盐酸体积分数不宜超过15%;在仪器最佳工作条件下,采用基体匹配方法消除铝对测定结果的影响,方法检出限、测定下限分别为0.01~0.04μg/mL和0.03~0.13μg/mL;方法相对标准偏差为0.49%~3.46%,回收率为98.5%~102.4%。方法灵敏度较好,简便、准确、可靠,可用于再生铝材料中多元素的测定。  相似文献   

8.
采用硝酸-盐酸混合酸溶解,5%(V/V)盐酸作为稀释酸,试液使用超声振荡混匀,基体匹配法绘制校准曲线消除基体效应的影响,建立了使用多向观测-电感耦合等离子体原子发射光谱法(ICP-AES)同时测定湿法磷酸中铝、镁、铁、钾、钠、锰、钙和铬的分析方法。根据分析线的选择原则,结合待测元素的检测范围,选择无干扰或干扰小、峰形对称、灵敏度高的谱线作为分析线。通过径向观测方式,减小样品稀释倍数,降低电离干扰,测定含量较高的铝、镁、铁;通过轴向观测方式,提高灵敏度,测定含量较低的锰、钙、铬;通过轴向衰减观测方式,减小谱线强度,测定含量较低的钾和钠。被测元素在一定质量浓度范围内与其发射强度呈线性,校准曲线的线性相关系数为0.998 6~0.999 9。方法的检出限为0.001 5~0.009 1μg/mL。按照实验方法测定两个湿法磷酸样品中的铝、镁、铁、钾、钠、锰、钙和铬,结果的相对标准偏差(RSD,n=12)为2.1%~8.1%。选择两个湿法磷酸样品,分别采用基体匹配法和标准加入法并使用ICP-AES测定,再采用其他化学方法进行比对(其中,铁采用邻菲哆啉比色法测定,铝采用不预分离干扰的氟盐取代-EDTA滴定法测定,钙采用高锰酸钾滴定法测定,锰采用过硫酸铵-亚铁滴定法测定,钾、钠、铬和镁均采用火焰原子吸收光谱法测定),所得铝、镁、铁、钾、钠、锰、钙和铬的测定结果基本吻合。  相似文献   

9.
胡建春  赵琎  张瑞霖 《冶金分析》2015,35(11):28-33
使用硝酸和高氯酸溶解氧化镍样品,溶液过滤后,采用恒电流电解重量法测定滤液中镍。加入10 mL 500 g/L柠檬酸铵,电解液酸度为pH 10,电解过程中所需的电解电流和电解时间为2 A/2 h。选择Ni 341.486 nm、Co 238.892 nm、Cu 324.752 nm、Zn 206.191 nm、Fe 259.940 nm、Mn 257.610 nm作为分析谱线,采用基体匹配法绘制校准曲线消除基体效应,使用电感耦合等离子体原子发射光谱法(ICP-AES)测定沉积在铂阴极上的钴、铜、锌、铁、锰,并测定电解残余液和酸不溶残渣中的镍、锰、铁。镍、铁、锰含量分别为电解在铂阴极的镍、铁、锰,电解液中残余镍、铁、锰,残渣回收浸出液中镍、铁、锰共3个部分测定值的总和。实验方法各元素的检出限为0.002 4~0.020 μg/mL,校准曲线的线性相关系数均大于0.999。按照实验方法测定氧化镍样品中镍、钴、铜、锌、铁和锰含量,测定结果的相对标准偏差(RSD,n=10)在0.11%~7.5%之间。实验方法用于氧化镍样品的测定,结果与国标方法以及原子吸收光谱法的测定结果相吻合。  相似文献   

10.
微波等离子体炬原子发射光谱法(MPT-AES)是利用微波源提供能量,其与电感耦合等离子体原子发射光谱法(ICP-AES)特点类似,具有原子化效率高、分析速度快和操作简单等优点,但是目前对该技术的应用研究仅限于仪器工作条件的优化,对某些共存元素的干扰缺乏有效的解决措施。实验以氩气为载气和工作气,详细考察了MPT-AES测定原油中钙的工作条件和共存元素对钙测定的影响。结果表明,选择Ca 393.366nm为分析谱线,微波功率为85 W,载气流量为1 350 mL/min,工作气流量为650 mL/min,钙质量浓度在0.010~6.00μg/mL范围内与其对应的发射强度呈线性,线性相关系数r=0.999 8;方法中钙的检出限为5.6×10-3μg/mL。干扰试验结果表明,7倍于钙质量浓度的钠,3倍于钙质量浓度的铁、钴,1倍于钙质量浓度的镁、铜、铝不影响钙的测定;1倍于钙质量浓度的钒、镍干扰钙的测定。在0.5mL 5g/L EDTA和0.5mL 10g/L邻菲罗啉溶液的联合作用下,可使铝、钴、镍、镁、铁、铜、钒的允许量至少提高到5倍。将实验方法应用于原油中钙的测定,测定结果与火焰原子吸收光谱法(FAAS)基本一致,相对标准偏差(RSD,n=6)为1.6%~2.2%。  相似文献   

11.
以盐酸和硝酸溶解铝镁环样品,选择Si 212.412 nm、Mn 257.610 nm、Fe 238.204 nm、Ti 334.940 nm、Cu 324.752 nm、P 187.221 nm 作为分析线,采用基体匹配法绘制校准曲线消除基体效应的影响,使用电感耦合等离子体原子发射光谱法(ICP-AES)测定铝镁环中硅、锰、铁、钛、铜、磷。各待测元素校准曲线线性相关系数均大于0.999。方法中各待测元素的检出限为0.001 1~0.020 μg/mL,测定下限为0.003 7~0.067 μg/mL。按照实验方法测定样品中硅、锰、铁、钛、铜、磷,结果的相对标准偏差(RSD,n=6)为0.62%~3.1%;各元素的回收率在89%~116%之间。按照实验方法测定样品中硅、锰、铁、钛、铜、磷,测定值与分光光度法及原子吸收光谱法测定结果相吻合。  相似文献   

12.
采用盐酸、硝酸溶解样品, 加入氢氟酸和高氯酸, 加热蒸发至干, 以除去四氟化硅和过剩的氢氟酸, 然后以稀盐酸溶解可溶性盐类, 用火焰原子吸收光谱法测定溶液中的铜。考察了不同比例的混合酸溶解样品的效果, 对测定介质种类、酸度和共存元素的干扰进行了试验。结果表明:盐酸+硝酸+氢氟酸+高氯酸可以将样品消解完全;2.5%(体积分数)以内的盐酸介质不影响铜的测定;在100mL溶液中, 40mg镍、1mg钴、10mg铬对0.02mg铜的测定没有影响;200mg的铁对0.02mg以上的铜的测定也没有影响, 但不同量的铁对0.01~0.02mg铜的测定有所影响, 因此测定低含量铜时可采用在空白溶液中加入铁基体的方法消除干扰。铜的检出限为0.011μg/mL, 测定下限为0.038μg/mL。方法用于镍基体料实际样品分析, 测定结果的相对标准偏差(n=11)在1.7%~2.0%范围, 加标回收率在98%~108%之间。  相似文献   

13.
在酸性和低温条件下, 直接用水溶解试样, 在选定的测量条件下, 用电感耦合等离子体原子发射光谱法(ICP AES)测定了硫酸锰中钙和镁含量。根据谱线的谱图、背景轮廓和强度值, 选择了信背比高、不受或少受光谱干扰、检出限低的Ca 317.9 nm、Mg 285.2 nm谱线分别作为钙、镁的分析谱线, 消除了基体元素锰对钙和镁测定的干扰影响。钙和镁校准曲线的线性相关系数分别为0.999 7和0.999 5, 检出限分别为0.007 μg/mL和0.002 μg/mL, 定量下限分别为0.022 μg/mL和0.007 1 μg/mL。对同一样品独立测定8次, 得到相对标准偏差(RSD)为0.78%(钙)和0.93%(镁);方法的加标回收率在97%~101%之间。样品的测定值与滴定法的测定值基本一致, 但实验方法操作相对简单、灵敏度和精密度较好, 适合硫酸锰中钙和镁含量的测定。  相似文献   

14.
刘爱坤 《冶金分析》2015,35(9):42-46
采用王水并滴加氢氟酸溶解含铬镍生铁样品,高氯酸冒烟,采用标准样品/控制样品制作校准曲线,测定过程采用内标法,实现了使用电感耦合等离子体原子发射光谱法(ICP-AES)测定含铬镍生铁中高镍、高铬以及锰、磷、钼、铜和钴等元素的测定。在仪器工作条件下,各元素校准曲线线性相关系数均大于0.999,其中镍元素线性相关系数达到0.999 9。方法中各元素的检出限为0.002 0~0.020 μg/mL。采用实验方法对含铬镍生铁实际样品中的镍、铬、锰、磷、钼、铜和钴含量进行测定,结果与国家标准化学分析方法基本一致,相对标准偏差(RSD,n=11)在0.53%~5.0%之间。  相似文献   

15.
左良 《冶金分析》2017,37(4):76-80
通过硝酸-氢氟酸-盐酸分解试样,高氯酸冒烟驱走硅和氟,最后用盐酸溶解盐类,选择Al 396.152 nm、Ca 315.887 nm、Ba 233.527 nm、Mn 257.610 nm、Zr 339.197 nm作为分析线,电感耦合等离子体原子发射光谱法(ICP-AES)测定硅锰锆孕育剂中铝、钙、钡、锰、锆。通过对试液分取稀释,降低和避免了铁离子共存体系中基体效应和光谱干扰对待测元素测定的影响。铝、钙、钡、锰、锆质量浓度在0.50~4.00μg/mL时与其发射强度呈线性,校准曲线的线性相关系数均大于0.999 9;方法中铝、钙、钡、锰、锆的检出限为0.60~1.1 μg/g。按照实验方法测定硅锰锆孕育剂中铝、钙、钡、锰、锆,结果的相对标准偏差(RSD,n=10)为1.6%~3.0%,并与其他方法测定结果基本一致。  相似文献   

16.
混合碱熔融-离子选择性电极法测定矿石中氟   总被引:1,自引:0,他引:1       下载免费PDF全文
采用1 g过氧化钠-2 g氢氧化钠混合熔剂熔融样品,加入热水浸取熔融物,此时铁、钙、钛、铅、铜、锆、稀土等以氢氧化物沉淀的形式被除去,加入少量乙醇煮沸来消除锰颜色的干扰,调节溶液pH值在5.5~6.5之间,在总离子强度调节剂二水柠檬酸钠-硝酸钾存在的情况下,以溴甲酚绿为指示剂,建立了氟离子选择性电极法测定矿石中氟的方法。实验表明:氟离子质量浓度的负对数与其对应的电位(E)存在良好线性关系,相关系数r为0.999,线性范围为0.2~20.0 μg/mL,方法检出限为0.019 μg/mL。进一步的干扰试验表明,样品中硅、铝、镁、钙、锌、磷和氯均不干扰测定。方法应用于10种矿石标准物质(锂矿石、钽矿石、钼矿石、钨矿石、锡矿石、磷矿石、锌矿石、锑矿石、铅矿石和铜矿石)中氟的测定,测定值与认定值一致,相对标准偏差(n=6或n=12)为0.30%~5.0%。  相似文献   

17.
苏凌云 《冶金分析》2014,34(11):69-72
铁矿中硫和磷是主要的有害成分,需对其进行准确测定。铁矿样品在低温下用逆王水和溴水溶解后,以P 213.618 nm 和S 182.034 nm作为分析谱线,建立了电感耦合等离子发射光谱测定铁矿石中硫和磷的分析方法。硫和磷检出限分别为0.019 μg/mL和0.004 μg/mL。试验表明:样品中钙、铁和铝对硫和磷的测定基本不产生干扰,铜对硫的测定也无干扰,而对磷的测定有干扰,但可通过扣除左背景的方法消除。对5种铁矿标准样品中硫和磷进行5次测定,测定值与认定值基本一致,相对标准偏差(RSD)分别在0.54%~3.1%和0.40%~3.0%范围。  相似文献   

18.
以高氯酸、硝酸和氢氟酸溶解试样,柠檬酸和硝酸浸取盐类,选择189.042、214.438、230.608、182.034、217.581 nm波长的光谱线分别作为砷、镉、铟、硫、锑的分析线,在设定的仪器参数下用电感耦合等离子体原子发射光谱法(ICP-AES)测定多金属矿石中砷、镉、铟、硫和锑含量。谱线的重叠和背景干扰通过选择无干扰或干扰小的谱线作为分析线和采用干扰系数法校正进行消除。方法的线性范围:对于砷为0~30 μg/mL,对于镉为0~10 μg/mL,对于铟为0~1 μg/mL,对于硫为0~1 500 μg/mL,对于锑为0~5 μg/mL。砷、镉、铟、硫和锑的检出限分别为0.87, 0.04, 1.0, 3.5和 0.81 μg/mL。方法用于多金属矿石标准物质的测定,测定值与认定值吻合,相对标准偏差(RSD,n=11)小于4.0%。  相似文献   

19.
采用盐酸、硝酸混合酸溶解样品,在盐酸介质中加热预还原,以柠檬酸和氟化铵作干扰抑制剂,盐酸(1+9)为载流,控制硼氢化钾的质量浓度为20 g/L,建立了氢化物发生-原子荧光光谱法同时测定高温镍基合金中痕量铋和碲的方法。实验表明:铋和碲的质量浓度均在2~10 μg/L以内与相应的荧光强度呈线性关系,方法的检出限分别为0.000 3 μg/L和0.002 μg/L。干扰试验表明:铋、碲在10 μg/L以内对彼此无干扰;加入5.0 mL 400 g/L柠檬酸溶液、5.0 mL 200 g/L氟化铵溶液可消除钴、铌、钼、铜对铋、碲测定的干扰;基体镍和主量元素铬、铁对铋、碲测定的干扰可通过基体匹配法消除。采用方法对高温镍基合金标准样品进行测定,测定值与认定值相符,结果的相对标准偏差(RSD,n=6)均不大于5%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号