首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
以聚碳硅烷(PCS)、二乙烯基苯(DVB)和SiC微粉为原料制备碳纤维布增强碳化硅复合材料,考察了分别采用金属模具和石墨模具制备的2D Cf/SiC材料的力学性能.结果表明采用石墨模具可以减少脱模时材料的层间损伤,制备的材料孔隙分布均匀,力学性能较好,材料的弯曲强度和剪切强度分别达到246.4MPa和24.2MPa,弯曲模量达到64.8GPa,断裂韧性达到10.7MPa·m1/2.  相似文献   

2.
以二硼化锆、正硅酸乙酯、蔗糖为原料,采用溶胶-凝胶法制备ZrB2-SiC前躯体,然后利用热压反应烧结方法,在1800℃,30MPa压力,流动的Ar气氛条件下,制备出高致密的ZrB2-SiC复合材料。其最大相对密度达到99.6%。ZrB2-SiC复合材料的抗弯强度和断裂韧性都随着SiC含量的增加先增加后降低。当SiC含量为20%时,ZrB2-SiC复合材料断裂韧性最大达到5.1MPa·m1/2。ZrB2-SiC复合材料的最大弯曲强度为272MPa,比报道出的值要低,这可能与过大的ZrB2晶粒有关。但当SiC含量为30%时,由于出现大量气孔而使材料不致密,从而导致其力学性能下降。  相似文献   

3.
先驱体聚铝碳硅烷经熔融纺丝、空气预氧化处理、1300℃烧成制得连续的含有少量铝和较多氧的SiC(OAl)纤维,即KD-A纤维.通过元素分析、拉伸强度测试及SEM,AFM,HRTEM,XRD等分析对纤维进行了表征.结果表明:连续KD-A纤维是非晶型的含铝SiC纤维,直径为12 μm~14 μm,具有较高的抗拉伸强度(2.6 GPa)和弹性模量(210 GPa),其耐高温和抗氧化性能明显优于Nicalon纤维,达到了Hi-Nicalon纤维的水平.  相似文献   

4.
以Ti、Si3N4、石墨和α-SiC粉体为原料,通过反应热压合成了TiN-SiC复合陶瓷材料。研究结果表明:在TiN-SiC复合陶瓷材料中,TiN和SiC晶粒细小均匀,无异常晶粒长大现象,TiN晶粒尺寸为1μm~7μm,SiC均匀分布于TiN之间;该复合材料的密度、维氏硬度和断裂韧性分别为4.41g/cm3、13.6GPa和6.89MPa·m1/2,其增韧机制主要为裂纹偏转和裂纹分叉机制。  相似文献   

5.
以聚碳硅烷(PCS)为陶瓷先驱体,采用PIP工艺制备3D-B Cf/SiC复合材料,研究了首周期不同工艺条件对材料性能的影响.结果表明首周期1600℃真空裂解的Cf/SiC复合材料性能最优,弯曲强度和断裂韧性分别达到497MPa和29.6 MPa·m1/2;首周期采用缓慢降温可以小幅度地提高Cf/SiC复合材料的力学性能.  相似文献   

6.
以先驱体浸渍裂解(PIP)工艺制备了2D Cf/SiC复合材料,研究了低温裂解工艺(裂解温度低于1000℃)对2DCf/SiC复合材料结构和性能的影响,为Cf/SiC复合材料的低温制备探索可行之路.研究表明,采用900℃裂解工艺制备的复合材料其力学性能达到或高于目前同类工艺制备的2D Cf/SiC复合材料力学性能,其弯曲强度达到329.6 MPa,剪切强度32.1 MPa,断裂韧性14.7 MPa·m1/2.并采用差热(TG-DTA)、红外光谱(IR)、X射线衍射(XRD)等对先驱体聚碳硅烷(PCS)及其低温裂解产物的结构和性能进行了研究.  相似文献   

7.
对ZrB2-SiC(ZS)材料和碳短纤维/ZrB2-SiC(ZSC)材料的断裂韧性、室温至900℃弯曲强度进行了测试和研究.结果表明:短纤维的加入可以显著提高材料的断裂韧性、从4.25 MPa·m1/2提高到6.56 MPa·m1/2,纤维拔出和脱粘以及裂纹的桥接和偏转是材料断裂韧性提高的原因;ZS和ZSC材料弯曲强度从室温到900℃经历了不同的过程,但都是两种因素共同作用的结果,即温度升高,晶界软化所带来的对裂纹的愈合作用与温度升高所带来的界面结合强度下降的作用.  相似文献   

8.
以液态聚碳硅烷(LPVCS)、聚碳硅烷(PCS)为先驱体,采用PIP工艺制备了连续碳纤维增强碳化硅(Cf/SiC)复合材料。LPVCS是一种新型先驱体,具有室温下为液态、浸渍效率高的优点,同时由LPVCS裂解得到的SiC基体具有能够与T300碳纤维形成合适界面力的优点。相比于全周期采用PCS浸渍制备的Cf/SiC复合材料,第一周期使用LPVCS浸渍,第二至八周期使用PCS浸渍,第八周期之后使用LPVCS浸渍制备的Cf/SiC复合材料具有更优异的力学性能,其三点弯曲强度由301MPa提高到442MPa,断裂韧性由11.2MPa.m1/2提高到26.1MPa.m1/2。力学性能提高的原因为两个方面,第一周期使用LPVCS浸渍得到了合适的界面结合强度,第八周期之后使用LPVCS浸渍提高了SiC基体的致密化程度。  相似文献   

9.
通过乙酰丙酮钇与聚碳硅烷反应,得到分子量适中(Mw=2816)、GPC曲线呈双峰分布、具有优异可纺性的新型先驱体含钇聚碳硅烷,在控制纺丝温度和压力后,得到表面光滑、无裂纹、直径为5.3 μm的原纤维.讨论了原纤维直径对纤维制备工艺及性能的影响.降低纤维直径,有利于减少纤维缺陷,提高纤维强度和柔顺性.当纤维直径为6.20 μm时,抗张强度为3.52 GPa,且随直径减小,抗张强度呈线性增长趋势,为制备新型含异质元素耐超高温SiC纤维奠定了基础.  相似文献   

10.
以ZrB_2、SiC纳米管(SiCNTs)为主要原料,通过放电等离子法烧结制备了SiC纳米管/ZrB_2复合陶瓷。分析了SiC纳米管添加量对复合陶瓷的相对密度、微观结构和力学性能的影响。结果表明:添加SiC纳米管可以有效增强ZrB_2陶瓷的力学性能;当SiC纳米管的添加量为1 mass%时,复合陶瓷的力学性能最佳,其抗弯强度为786.53 MPa,维氏硬度为21.58 GPa,断裂韧性为5.21 MPa·m~(1/2)。  相似文献   

11.
针对HfB2陶瓷材料难烧结和韧性差等问题,选择ZrC粉、Si粉和C粉为烧结助剂,借助ZrC-Si-C间的原位反应生成ZrSi2和SiC,促进HfB2陶瓷的烧结,并提高HfB2陶瓷的综合力学性能。结果表明,HfB2与烧结助剂的混合粉体经放电等离子烧结(SPS)在1600℃保温10 min和40 MPa的压力条件下制备出相对密度为96.6 1%的HfB2-ZrSi2-SiC复合材料,所制样品的硬度、抗弯强度和断裂韧性均随着烧结助剂ZrC-Si-C含量的增加呈现先上升后降低的趋势。当ZrC-Si-C添加量为10%时所制备样品的综合力学性能最好,其硬度值为26.80±1.2 GPa、抗弯强度为504±40 MPa、断裂韧性值为4.66±0.21 MPa·m1/2。  相似文献   

12.
The ZrB2-SiC nano composite was produced in a pressureless sintering method. The micro AlN powder was used as an additive. In order to investigate the effect of the simultaneous presence of nano and micro particles of SiC, the ZrB2 powder with various percentages of nano and micro SiC particles were mechanically milled in a planetary mill for 2 h at a speed of 200 rpm. The resulting mixture was subjected to an initial hot press at 80 °C and a pressure of 100 MPa and then cold isostatic pressing was done (CIP) and the resulting sample sintered at 2150 °C. The AlN particles were then added to ZrB2-SiC composite and its microstructure and mechanical properties were evaluated. The results show that by changing the volume percentage of nano SiC particles from 20% to 15% and 5% for the micro particles, the porosity decreases and the density increases. Microstructural analysis and mechanical properties of the samples showed the highest hardness (15.9 GPa) and fracture toughness (4.9 MPa.m1/2) for the sample with 15 and 5 vol% of nano and micro SiC particles respectively. Addition of 7.5 vol% of AlN particles resulted to the density of 98.1% and the hardness and toughness values increased to 17.1 GPa and 5.7 MPa.m1/2.  相似文献   

13.
本文针对国内外对高导热、低热膨胀系数的热沉材料需求,以金刚石为基体、硅粉为添加物,用国产六面顶压机在5.1 GPa,1 350~1 650℃的条件下,采用高压固液渗透法合成出金刚石/碳化硅陶瓷热沉材料,并对高压烧结体的相组成、密度与热导率进行了分析.研究结果表明:初始材料中硅含量、烧结时间与温度对烧结体的成分以及密度有...  相似文献   

14.
2%C/MoSi2复合材料的组织结构与性能   总被引:8,自引:1,他引:7  
采用热压烧结工艺制得了2%C/MoSi2(质量分数)复合材料,并测定了材料的显微组织和结构、室温和高温力学性能、耐磨性能以及电阻率。结果:C/MoSi2复合材料由大量的MoSi2、多量的Mo5Si3和少量的β-SiC组成,其硬度Hv为1060,抗弯强度为470MPa,断裂韧性为5.12MPa.m^1/2,800℃的硬度Hv为750,1200℃的抗压强度为450MPa,1400℃的抗压强度为142MPa;在Al2O3和SiC磨盘上表现出优异的耐磨性能,材料的电阻率为349n.m。与纯MoSi2相比,2%C/MoSi2复合材料在硬度、抗弯强度、断裂性、高温抗压强度、弹性模量和耐磨性能等方面都有较大的提高。  相似文献   

15.
以低压铸造用升液管为研究目的,以Y2O3-Al2O3-Fe2O3为复合烧结助剂,磨切单晶硅废料Si粉和SiC为主料,反应烧结法制备Si3N4/SiC复相陶瓷。研究了Y2O3含量对复合材料结构和力学性能的影响,采用XRD、SEM对复合材料的相组成、微观形貌进行分析。结果表明,反应烧结后试样生成Si3N4结合SiC晶粒为主相的烧结体,并含有少量Sialon晶须及未反应的Si。Y2O3含量对复相陶瓷力学性能影响很大,在分析稀土Y2O3作用机理的基础上,得到2.5%Y2O3优化试样的力学性能优良,相对密度达到88%,维氏硬度达到1.1 GPa,常温抗弯强度50 MPa。  相似文献   

16.
Al2O3/ZrO2(Y2O3)复合材料断裂过程中的相变及力学性能   总被引:6,自引:0,他引:6  
用真空烧结方法制备了Al2O3/ZrO2(Y2O3)复合材料,分析了ZrO2(3Y)和ZrO2(2Y)含量对Al2O3基陶瓷抗弯强度、断裂韧性的影响.用XRD定量分析了含摩尔分数2%与3%Y2O3的ZrO2(2Y)与ZrO2(BY)在断裂过程中四方相转变成单斜相的相变量,用以阐明增韧机制.结果表明,在ZrO2含量为15%(体积分数)时,Al2O3/ZrO2(3Y)和Al2O3/ZrO2(2Y)复合材料的抗弯强度、断裂韧性分别达到825MPa,7.8MPa·m1/2和738MPa,6.7MPa·m1/2,两者的性能差异主要来自不同的增韧机制.  相似文献   

17.
采用沉淀法制备了表面包裹Yb_2O_3的ZrB_2-SiC-Yb_2O_3复合粉体(不同含量的Yb_2O_3作为烧结助剂),并在1900℃无压烧结制备了ZrB_2-SiC-Yb_2O_3复合材料.研究Yb_2O_3添加量对复合材料致密化和性能的影响.结果表明,Yb_2O_3的添加在促进ZrB_2-SiC烧结致密的同时,也提高了ZrB2-SiC复合材料的力学性能.添加10% Yb_2O_3(质量分数, 下同)的ZrB_2-SiC复合材料的相对密度为89%,抗弯曲强度为158 MPa,断裂韧性为2.95 MPa·m~(1/2).  相似文献   

18.
采用热压烧结的方法,在不同烧结温度下对B4C微粉进行烧结,详细研究烧结温度对B4C陶瓷材料的力学性能和显微组织的影响。结果表明:B4C陶瓷材料的相对密度、抗弯强度及断裂韧性都随着烧结温度的升高先增大后减小,维氏硬度则随着烧结温度的增大而增大。采用粒度为1.5μm的B4C粉末,在1950℃热压后,材料的综合性能较好,其相对密度为99.1%、维氏硬度为32.3GPa、抗弯强度为524.6MPa、断裂韧性为6.56MPa·m1/2。  相似文献   

19.
热压烧结添加MoS2的Ti3SiC2复合陶瓷及性能   总被引:1,自引:0,他引:1  
利用热压烧结工艺(Hot—Pressing Sintering HP)制备不同MoS2质量含量的Ti3SiC2复合陶瓷,并研究其性能。研究表明,在烧结温度为1400℃,30MPa压力,保温60min的条件下,Ti3SiC2复合陶瓷烧结体的相对密度达99%以上。在Ti3SiC2中添加MoS2能大幅提高材料的性能,当MoS2含量为4州%时,Ti3SiC2复合陶瓷的显微硬度达到7.83GPa,同时它的电导率达到10.05×10^6S·m^-1。在载荷为38N和转速为400r/min下,Ti3SiC2复合陶瓷在干摩擦和油润滑两种摩擦条件下的摩擦系数分别为0.176~0.283和0.062~0.134,并且试样的磨损率分别为2.657×10^-6mm^3·N^-1·m^-1和1.968×10^-7mm^3·N^-1·m^-1,比单相Ti3SiC2陶瓷的磨损率(9.9×10^-5mm^3·N^-1·in^-1)小。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号