首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
In the present study, the effect of talc content on the mechanical, thermal, and microstructural properties of the isotactic polypropylene (i‐PP) and elastomeric ethylene/propylene/diene terpolymer (EPDM) blends were investigated. In the experimental study, five different talc concentrations, 3, 6, 9, 12, and 15 wt %, were added to i‐PP/EPDM (88/12) blends to produce ternary composites. The mechanical properties such as yield and tensile strengths, elongation at break, elasticity modulus, izod impact strength for notch tip radius of 1 mm, and hardness with and without heat treatments and thermal properties, such as melt flow index (MFI), of the ternary composites have been investigated. The annealing heat treatment was carried out at 100°C for holding time of 75 h. From the tensile test results, an increased trend for the yield and tensile strengths and elasticity modulus was seen for lower talc contents, while elongation at break showed a sharp decrease with the addition of talc. In the case of MFI, talc addition decreased the MFI of i‐PP/EPDM blends. It was concluded that, taking into consideration, mechanical properties and annealing heat treatment, heat treatment has much more effect on higher yield and tensile strengths, elongation at break, elasticity modulus, impact strength, and hardness. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 3033–3039, 2006  相似文献   

2.
The main aim of this work was to study and compare the mechanical and thermal properties of hybrid polypropylene (PP) composites and single‐filler PP composites. With two main types of mineral fillers—calcium carbonate (CaCO3) and talc—PP composites of different filler weight ratios (talc/CaCO3) were compounded with a twin‐screw extruder and then injection‐molded into dumbbell specimens with an injection‐molding machine. Tensile, flexural, and impact tests were performed to determine and compare the mechanical properties of the hybrid and single‐filler PP composites. A synergistic hybridization effect was successfully achieved; the flexural strength and impact strength were highest among the hybrids when the PP/talc/CaCO3 weight ratio was 70:15:15. The nucleating ability of the fillers and its effects on the mechanical properties were also studied with differential scanning calorimetry. Because of the influence of talc as the main nucleating agent, the hybrid fillers showed significant improvements in terms of the nucleating ability, and this contributed to the increase in or retention of the mechanical properties of the hybrid composites. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 91: 3327–3336, 2004  相似文献   

3.
In the present study, an epoxy resin was dynamically cured in a polypropylene (PP)/maleic anhydride–grafted PP (MAH‐g‐PP)/talc matrix to prepare dynamically cured PP/MAH‐g‐PP/talc/epoxy composites. An increase in the torque at equilibrium showed that epoxy resin in the PP/MAH‐g‐PP/talc composites had been cured by 2‐ethylene‐4‐methane‐imidazole. Scanning electron microscopy analysis showed that MAH‐g‐PP and an epoxy resin had effectively increased the interaction adhesion between PP and the talc in the PP/talc composites. Dynamic curing of the epoxy resin further increased the interaction adhesion. The dynamically cured PP/MAH‐g‐PP/talc/epoxy composites had higher crystallization peaks than did the PP/talc composites. Thermogravimetric analysis showed that the addition of MAH‐g‐PP and the epoxy resin into the PP/talc composites caused an obvious improvement in the thermal stability. The dynamically cured PP/MAH‐g‐PP/talc/epoxy composites had the best thermal stability of all the PP/talc composites. The PP/MAH‐g‐PP/talc/epoxy composites had better mechanical properties than did the PP/MAH‐g‐PP/talc composites, and the dynamically cured PP/MAH‐g‐PP/talc/epoxy composites had the best mechanical properties of all the PP/talc composites, which can be attributed to the better interaction adhesion between the PP and the talc. The suitable content of epoxy resin in the composites was about 5 wt %. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci, 2006  相似文献   

4.
Some results of experiments on the mechanical and rheological properties of mineral filled polypropylene were presented. Single filler and hybrid filler composites of talc and calcium carbonate (CaCO3) were prepared in a co‐rotating twin‐screw extruder. The effect of filler type, filler content, and coupling agent on the mechanical and rheological properties of the polypropylene were studied. The coupling agent was maleic anhydride‐grafted polypropylene (PP‐g‐MA). It was found that the mechanical properties are affected by filler type, filler concentration, and the interaction between filler and matrix. The tensile strength of the composite is more affected by the talc while the impact strength is influenced mostly by CaCO3 content. The elongation at break of PP/CaCO3 composites was higher than that of PP/talc composites. The incorporation of coupling agent into PP/mineral filler composites increased the mechanical properties. Rheological properties indicated that the complex viscosity and storage modulus of talc filled samples were higher than those of calcium carbonate filled samples while the tan δ was lower. The rheological properties of hybrid‐filler filled sample were more affected by the talc than calcium carbonate. The PP‐g‐MA increased the complex viscosity and storage modulus of both single and hybrid composites. POLYM. COMPOS., 2009. © 2009 Society of Plastics Engineers  相似文献   

5.
In this research, the influences of adding talc mineral particles of 10 μm particle size on the shrinkage and the mechanical properties of injection molded polypropylene (PP)/talc composites were investigated. PP has a crystalline molecular structure and hence it possesses nonisotropic shrinkage along and across the flow directions. Addition of the talc mineral filler to PP induced an isotropic shrinkage in the molded part because of the nonisotropic shape of talc particles. The results of experiments indicated that the maximum flexural strength, maximum impact strength, and isotropic shrinkage were achieved by adding 10, 20, and 30 by weight percent of talc respectively. By incorporating of 10 wt% of talc particles into the PP matrix, the tensile strength was hardly affected but the occurrence of cold drawing phenomena in the tensile test was hindered considerably. The flake‐shape structure of talc filler played an important role in determining the molded part shrinkage and mechanical properties. POLYM. ENG. SCI., 47:2124–2128, 2007. © 2007 Society of Plastics Engineers  相似文献   

6.
Three types of mineral fillers—talc, calcium carbonate (CaCO3), and kaolin (10–40 wt % filler loadings)—were compounded with polypropylene (PP) with a twin‐screw extruder. The composites were injection‐molded, and the effects of the filler loading on the mechanical, flow, and thermal properties for the three different types of filled composites were investigated. The aim was to compare their properties and to deduce prospective filler combinations that would yield hybrid PP composites in following studies. The results showed that in most cases, the strength and stiffness of the talc‐filled PP composites was significantly higher than those of the CaCO3‐ and kaolin‐filled PP composites. However, CaCO3, being a nonreactive filler, increased the toughness of PP. The kaolin‐filled PP composites also showed some improvement in terms of strength and stiffness, although the increases in these properties were not as significant as those of the talc‐filled PP composites. The effects of interfacial interactions between the fillers and PP on the mechanical properties were also evaluated with semiempirical equations. The nucleating ability of all three fillers was studied with differential scanning calorimetry, and the strongest nucleating agent of the three was talc, followed by CaCO3 and kaolin. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 91: 3315–3326, 2004  相似文献   

7.
Polypropylene (PP)–talc composites with proper spatial gradients were prepared by gradually varying the component ratio of PP and talcum powder during the extrudion process. The gradient variations of composition, structural and physical properties along the radius direction of a cylindrical sample were studied by wide angle x‐ray diffraction (WAXD), thermogravimetric analysis (TG), scanning electron microscopy (SEM) and tensile testing. The WAXD and TG results indicate that the content of either component shows a monotonic change along the radius direction. With increasing radius, a gradually decreased percentage of PP was observed, while that of the talc filler gradually increased. A gradually varying stacking density of the talcum powder in the PP matrix was also observed by the SEM images for the sliced specimens sampled at different positions. As a result of such variations in both component and structure, the physical properties, including the mechanical performance and thermal behaviour of the PP–talc composites, gradually varied along the radius direction. The experimental data show that a polymeric gradient material (PGM), with significantly different structures and properties existing on both sides, can be prepared by using this unique process. Copyright © 2004 Society of Chemical Industry  相似文献   

8.
In this study, polypropylene/ethylene–octene copolymer (PP/POE) blends, PP/talc, and PP/POE/micro‐talc (MT) composites were fabricated using a twin screw. To estimate the performances of the PP/POE blends, PP/talc, and PP/POE/MT composites, mechanical properties, heat deflection temperature (HDT), thermomechanical analysis, and isothermal crystallization characterization were conducted. Incorporating talc particles increased the tensile strength, flexural properties, and HDT of the PP matrix, but reduced the elongation at break and notched impact strength. The inclusion of POE elastomers in the PP matrix yielded the opposite effect on PP/talc composites. PP/POE/MT composites provide a compromise that improves both the flexural properties and notched impact strength. Moreover, the inclusion of talc particles in PP/POE blends induced heterogeneous nucleation and considerably reduced the crystallization time. Consequently, the time required for processing was also greatly reduced. POLYM. COMPOS., 36:69–77, 2015. © 2014 Society of Plastics Engineers  相似文献   

9.
This study was performed with commercially available phenyl trimethoxysilane (PTMS) and neoalkoxytitanate [i.e., neopentyl(diallyl)oxytri(dioctyl)phosphato titanate (LICA 12)] as coupling agents. PTMS and LICA 12 were used to treat talc and kaolin to compare their effects with untreated fillers upon incorporation into polypropylene (PP). Single‐filler PP composites (containing either talc or kaolin) and hybrid‐filler composites (containing a mix of both talc and kaolin) were compounded in a twin‐screw extruder and subsequently injection‐molded into dumbbells. The incorporation of PTMS and LICA 12 slightly decreased the tensile and flexural properties in terms of modulus and strength but increased the elongation at break for both single‐filler and hybrid‐filler composites. There was also a significant improvement in the impact strength of the composites, particularly those treated with LICA 12. The hybrid composites, through the synergistic coalescence of positive characteristics from talc and kaolin with the aid from chemical treatment provided an economically advantageous material with mechanical properties comparable to those of the single‐filler‐filled PP composites. Further investigations on flow and morphological properties were also done to correlate the mechanical properties of the single‐ and hybrid‐filler‐filled PP composites. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

10.
将动态硫化技术应用于热塑性树脂/填料/热固性树脂复合体系,制备了动态固化聚丙烯(PP)/马来酸酐接枝PP(PP-g-MAH)/滑石粉(Talc)/环氧树脂(EP)复合材料。研究了动态固化PP/PP-g-MAH/Talc/EP复合材料的界面作用、形态结构、力学性能以及热稳定性。实验结果表明:PP/PP-g—MAH的加入,可明显增加PP/Talc复合材料的界面作用。在动态固化PP/PP-g-MAH/Talc/EP复合材料中,PP和Talc两相界面更加模糊,动态固化EP进一步增加了PP和Talc间的界面作用。当EP的用量超过5份时,部分EP呈颗粒状分布在PP基体中。与PP/PP-g-MAH/Talc/EP和PP/PP-MAH-Talc/EP复合材料相比,动态固化PP/PP-g-MAH/Talc/EP复合材料的冲击强度、拉伸强度和弯曲模量均有明显提高。当EP用量超过5份时,复合材料的冲击强度和断裂伸长率明显降低,但拉伸强度和弯曲模量继续增加。热分析表明动态固化PP/PP-g-MAH/Talc/EP复合材料具有较高的热稳定性。  相似文献   

11.
Talc and talc modified with trimethoxy(octadecyl)silane (O‐talc) were melt compounded with poly (L ‐lactide) (PLA). The crystallization behavior, tensile properties, and impact strength of the PLA composites were examined before and after the incorporation of talc and O‐talc. The molecular weight of PLA in the PLA composites was measured as a function of the hydrolysis time and temperature. The effect of talc and O‐talc on the thermal stability of PLA was examined and quantified by the activation energy of thermal degradation and the integral procedural decomposition temperature value determined from the corresponding thermo‐gravimetric analysis weight loss profiles. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

12.
利用马来酸酐(MAH)/苯乙烯(St)共单体固相接枝聚丙烯(MSP)作增容剂,采用熔融共混和注塑成型的方法制备了PP/滑石粉复合材料,研究了MSP对PP/滑石粉复合材料热行为、拉伸强度和动态力学性能的影响.结果显示MSP降低了PP/滑石粉复合材料中PP相的熔融温度(Tm),但随着增容剂MSP含量的增加,Tm呈上升趋势.MSP改善了PP/滑石粉间的相容性,促进了滑石粉的异相成核作用,提高了PP相的Tco随着MSP含量的提高,Tc呈下降趋势.MSP增容剂提高了PP/MSP/滑石粉复合材料的拉伸强度和动态贮能模量,并存在一最佳的增容剂添加量.  相似文献   

13.
Polypropylene (PP) or modified PP is one of the most commonly used synthetic polymers for the development of materials in construction, automotive, packaging, and other applications. However, improvements of inherent mechanical, thermal, and morphological properties are required to transfer its potential into reality. In this context, some comparative study with talc and Moroccan clay were performed to improve the inherent properties of modified PP i.e., PP‐SEBS‐g‐MA matrix composite of PP‐SEBS‐g‐MA with different loadings of talc and Moroccan clays. All the composites samples were prepared by melt mixing method. Thermal and Mechanical properties of the composite sample were higher than unreinforced samples. Improvement of crystalinity, thermal stability, and rigidity was observed in the composite samples due to incorporation of the filler. Highest young modulus was observed in case of talc filled PP composites. It's observed from Tsai‐pagano model results that the young's modulus of talc still higher than that of both clay particles, but using the density of fillers, the results in terms of specific properties shown that the specific rigidity is comparable. In summary, it was examined the ability of Moroccan clay particles, as an alternative filler for PP composite compared with the traditional commercial reinforcements such as talc and mineral calcium carbonate. POLYM. COMPOS., 36:675–684, 2015. © 2014 Society of Plastics Engineers  相似文献   

14.
Commercially available organosilane (3‐glycidoxypropyltrimethoxysilane (GPTMS)) coupling agent was used to treat talc in order to improve the affinity relative between the filler and the polymer in composites as well as filler and polymer in the thermoplastic polyurethane/polypropylene (TPU/PP) blends (talc content was 5 wt%). The talc particles were first modified with GPTMS and then introduced into TPU, PP as well as TPU/PP blends with different weight ratios of polymers using blending method and subsequently injection molded in a hydraulic press. The aim was to report the effect of silane coupling agent on the thermal and morphological properties of talc filled composites and blends. The results showed that the thermal properties of the TPU, PP composites and TPU/PP blends were improved with the addition of silane treated talc (higher melting (Tm), crystallization (Tc) temperatures and degree of crystallinity (χc)). The glass transition temperature (Tg) obtained by dynamic mechanical analysis (DMA) of the TPU soft segments in TPU/PP blends increased with the addition of untreated and silane treated talc due to lower mobility of the soft segments in TPU and better miscibility of TPU and PP. TPU/PP blends with the silane treated talc show better thermal stability than the TPU/PP blends with untreated talc. POLYM. ENG. SCI., 55:1920–1930, 2015. © 2014 Society of Plastics Engineers  相似文献   

15.
The effect of the hybridization of short glass fibers (GFs) and talc mineral filler on the tensile mechanical performance of injection‐molded propylene‐ethylene copolymer composites (PPcop) with and without weld lines (WLs) was studied in this work. The fibrous reinforcement imparts high‐tensile stiffness and strength to the molding but originates a highly anisotropic composite. The negative effect of this anisotropy is even worse when WLs occur in the molding, as the high aspect ratio GFs tend to be oriented on the weak plane of the WL. Through hybridization of GF and talc, combined in different proportions, it is possible to obtain improved mechanical properties in comparison to the standard GF reinforced PPcop composites. The combination of GF with talc was shown to be beneficial for the WL strength of PPcop composites, once a synergism effect was achieved with the expected optimization of the fibers/particles packing efficiency of the hybrid reinforcement. At a given constant total reinforcement concentration, the experimental data of both tensile modulus and strength properties of the hybrid composites without WL were above the predictions derived from the estimated rule of mixtures. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

16.
Talc is a laminar silicate, considered as an excellent nucleating agent for polypropylene (PP) crystallization. However, properties of PP/talc composites depend on the morphology, size, and surface of mineral particles. In this sense, talc from several ores, having different morphology, imparts specific characteristics on these materials. Also, taking into account that PP‐talc adhesion is not necessarily good due to the apolar character of PP, talc surface has been modified in order to increase this parameter. In this work, the effects of talc genesis, geomorphologic aspects, and particle surface characteristics on crystallization of PP/talc composites are analyzed. Isothermal crystallization of PP/talc composites was studied by using differential scanning calorimetry, based on Avrami model. The final crystalline morphology of talc‐filled PP was analyzed by means optical microscopy. The results show that the blocky talc morphology favors even more the crystallization compared to the platy one, at the same particle size. Taking into account the surface treatment studied in this work, the talc surface is made hydrophobic and the particle delamination is favored. As a consequence, so‐modified talc is very effective in increasing the crystallization temperature of PP and the nuclei number that grow during the crystallization with respect to the untreated talc. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

17.
PP/滑石粉导热绝缘复合材料的制备与性能研究   总被引:1,自引:0,他引:1  
采用聚丙烯(PP)为基体,不同粒径滑石粉为填料,通过双螺杆挤出机挤出制备导热绝缘的PP滑石粉复合材料。在滑石粉用量为3O%的条件下,探讨了粒径分别为3.6,6,12,30,50 μm的滑石粉对PP猾石粉复合材料的热导率、体积电阻率、力学性能和结晶性能的影响。结果表明,随着滑石粉粒径的减小,复合材料的拉伸强度和弯曲强度呈先增大后减小的变化趋势,而其热导率则呈先减小后增大的变化趋势。填充粒径为12μm的滑石粉时,复合材料的拉伸强度和弯曲强度达到最大值,分别为29.92MPa和52.58MPa,比纯PP分别提高了5.5%和12.8%。填充粒径为50μm的滑石粉时,复合材料的热导率最大,达到0.3237W/(m*K),比纯PP提高了32.7%。填充1:l的粒径为12μm和30μm滑石粉混合物时,PP复合材料的热导率为0.3184W/(m*K),高于相应的填充单一粒径滑石粉的PP复合材料。此外,所制备的PP滑石粉复合材料的体积电阻率均大于10^8Ω*cm  相似文献   

18.
Polypropylene (PP) hybrid composites have been produced by compounding two types of mineral fillers, viz., talc and kaolin with PP copolymer using a twin screw extruder. The PP hybrid composite was injection‐molded into dumbbell specimen for tensile, flexural, and impact properties characterizations. MFI and SEM studies were used to characterize the flow and morphological properties of the PP hybrid composites. The result shows that most of the hybrid composites showed a significant decrease in flow, tensile, flexural, and impact properties compared with the single filler‐filled PP composites. However, a hybridization effect was seen for the PPT20K10 hybrid composites, through the synergistic coalescence of positive characteristics from 20 wt % of talc and 10 wt % of kaolin. This hybrid formulation have given an economically advantageous material with the mechanical properties (tensile, flexural, and impact) comparable to those of the talc‐filled PP composites. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 434–441, 2007  相似文献   

19.
The morphology, tensile, impact properties, and thermal expansion behavior of polycarbonate (PC)/acrylonitrile‐styrene‐butadiene (ABS)/talc composites with different compositions and mixing sequences were investigated. From the studies of morphology of the PC/ABS/talc composites, it was observed that some talc particles were located in both the PC and the ABS phases of the blend but most were at the interface between the PC and ABS phases for every mixing sequence. Aspect ratios of the talc particles determined by TEM image analysis reasonably matched values computed from tensile modulus using composite theory. The thermal expansion behavior, or CTE values, was not significantly influenced by the mixing sequence. The impact strength of the PC/ABS/talc composites depended significantly on the mixing sequence; a premix with PC gave the poorest toughness. The molecular weight of the PC in PC/talc composites was found to be significantly decreased. It appears that the impact strength of the PC/ABS/talc composites is seriously compromised by the degradation of the PC caused by talc. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

20.
Talc-filled polypropylene (PP) composites were prepared by extrusion in a wide composition range (0–40 wt %). To improve the affinity relation between talc and the PP matrix, we modified the talc surface with silane coupling agents. Differential scanning calorimetry investigations on test samples, prepared by injection moulding, revealed that the talc content and its surface modification had a pronounced effect on the crystallization behavior of the filled PP composites. The experimental results indicate that a talc concentration of 2 wt % strongly affects the nonisothermal crystallization process of the PP, especially when talc is silane treated Isothermal crystallization experiments on samples with minimum amounts of talc (2 wt %) revealed an improved nucleation activity with silane-treated talc. © 1996 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号