首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Glycidyl methacrylate functionalized acrylonitrile–butadiene–styrene (ABS‐g‐GMA) particles were prepared and used to toughen polylactide (PLA). The characteristic absorption at 1728 cm?1 of the Fourier transform infrared spectra indicated that glycidyl methacrylate (GMA) was grafted onto the polybutadiene phase of acrylonitrile–butadiene–styrene (ABS). Chemical reactions analysis indicated that compatibilization and crosslinking reactions took place simultaneously between the epoxy groups of ABS‐g‐GMA and the end carboxyl or hydroxyl groups of PLA and that the increase of GMA content improved the reaction degree. Scanning electron microscopy results showed that 1 wt % GMA was sufficient to satisfy the compatibilization and that ABS‐g‐GMA particles with 1 wt % GMA dispersed in PLA uniformly. A further increase of GMA content induced the agglomeration of ABS‐g‐GMA particles because of crosslinking reactions. Dynamic mechanical analysis testing showed that the miscibility between PLA and ABS improved with the introduction of GMA onto ABS particles because of compatibilization reactions. The storage modulus decreased for the PLA blends with increasing GMA content. The decrease in the storage modulus was due to the chemical reactions in the PLA/ABS‐g‐GMA blends, which improved the viscosity and decreased the crystallization of PLA. A notched impact strength of 540 J/m was achieved for the PLA/ABS‐g‐GMA blend with 1 wt % GMA, which was 27 times than the impact strength of pure PLA, and a further increase in the GMA content in the ABS‐g‐GMA particles was not beneficial to the toughness improvement. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

2.
Ternary blends of polyoxymethylene (POM), polyolefin elastomer (POE), and glycidyl methacrylate grafted high density polyethylene (GMA‐g‐HDPE) with various component ratios were studied for their mechanical and thermal properties. The size of POE dispersed phase increased with increasing the elastomer content due to the observed agglomeration. The notched impact strength demonstrated a parabolic tendency with increasing the elastomer content and reached the peak value of 10.81 kJ/m2 when the elastomer addition was 7.5 wt%. The disappearance of epoxy functional groups in the POM/POE/GMA‐g‐HDPE blends indicated that GMA‐g‐HDPE reacted with the terminal hydroxyl groups of POM and formed a new graft copolymer. Higher thermal stability was observed in the modified POM. Both storage modulus and loss modulus decreased from dynamic mechanical analysis tests while the loss factor increased with increasing the elastomer content. GMA‐g‐HDPE showed good compatibility between the POM matrix and the POE dispersed phase due to the reactive compatibilization of the epoxy groups of GMA and the terminal hydroxyl groups of POM. A POM/POE blend without compatibilizer was researched for comparison, it was found that the properties of P‐7.5(POM/POE 92.5 wt%/7.5 wt%) were worse than those of the blend with the GMA‐g‐HDPE compatibilizer. POLYM. ENG. SCI., 57:1119–1126, 2017. © 2017 Society of Plastics Engineers  相似文献   

3.
The inherent brittleness of poly(lactic acid) (PLA) limits its wide application in many fields. Here, high‐impact PLA/ethylene–methyl acrylate–glycidyl methacrylate random terpolymer (EMA–GMA) blends were prepared with the addition of a small amount of N,N‐dimethylstearylamine (DMSA) catalyst. It was found that the notched impact resistance of various PLA/EMA–GMA blends could be considerably improved by adding DMSA. In particular, the notched Izod impact strength of the blend with 20 wt% EMA–GMA increased from 35.6 to 83.5 kJ m?2 by adding 0.2 wt% DMSA. Reactive compatibilization between PLA and EMA–GMA with DMSA was studied using Fourier transform infrared spectroscopy. The results indicated that DMSA promoted the reaction between the epoxide group of EMA–GMA and end groups (–OH, –COOH) of PLA. This considerably improved the interfacial adhesion, leading to better wetting of the dispersed phase by the PLA matrix and finer dispersed EMA–GMA particles. Therefore, the significant increase in notched impact strength was attributed to the effective reactive compatibilization promoted by DMSA. © 2013 Society of Chemical Industry  相似文献   

4.
Poly(ethylene‐octene) (POE), maleic anhydride grafted poly(ethylene‐octene) (mPOE), and a mixture of POE and mPOE were added to poly(butylene terephthalate) (PBT) to prepare PBT/POE, PBT/mPOE, and PBT/mPOE/POE blends by a twin‐screw extruder. Observation by scanning electron microscopy revealed improved compatibility between PBT and POE in the presence of maleic anhydride groups. The melting behavior and isothermal crystallization kinetics of the blends were studied by wide‐angle X‐ray diffraction and differential scanning calorimeter; the kinetics data was delineated by kinetic models. The addition of POE or mPOE did not affect the melting behavior of PBT in samples quenched in water after blending in an extrude. Subsequent DSC scans of isothermally crystallized PBT and PBT blends exhibited two melting endotherms (TmI and TmII). TmI was the fusion of the crystals grown by normal primary crystallization and TmII was the melting peak of the most perfect crystals after reorganization. The dispersed second phase hindered the crystallization; on the other hand, the well dispersed phases with smaller size enhanced crystallization because of higher nucleation density. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

5.
Two grafted ethylene–octene copolymers [POEs; i.e., POE‐g‐maleic anhydried (MAH) and aminated POE (denoted by POE‐g‐NH2) were used as compatibilizers in immiscible blends of thermoplastic polyurethane (TPU) and POE. The effects of the compatibilizers on the dynamic rheological properties and morphologies of the TPU/POE blends were investigated. The characteristic rheological behaviors of the blends indicated that the strong interactions between the two phases were due to the compatibilization. Microstructural observation confirmed that the compatibilizers were located at the interface in the blends and formed a stable interfacial layer and smaller dispersed phase particle size. Compared with POE‐g‐MAH, POE‐g‐NH2 exhibited a better compatibilization effect in the TPU/POE blends. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

6.
The compatibilization of blends of poly(ethylene‐2,6‐naphthalate) (PEN) with polystyrene (PS), through the styrene‐glycidyl methacrylate copolymers (SG) containing various glycidyl methacrylate (GMA) contents, was investigated in this study. SG copolymers are able to react with PEN terminal groups during melt blending, resulting in the formation of desirable SG‐g‐PEN copolymers in the blend. These in situ formed copolymers tend to reside along the interface preferentially as the result of interfacial reaction and thus function as effective compatibilizers in PEN/PS blends. The compatibilized blends exhibit higher viscosity, finer phase domain, and improved mechanical properties. It is found that the degree of grafting of the in situ formed SG‐g‐PEN copolymer has to be considered as well. In blends compatibilized with the SG copolymer containing higher GMA content, heavily grafted copolymers would be produced. The length of the styrene segment in these heavily grafted copolymers would be too short to penetrate deep enough into the PS phase to form effective entanglements, resulting in the lower compatibilization efficiency in PEN/PS blends. Consequently, the in situ formation of SG‐g‐PEN copolymers with an optimal degree of grafting is the key to achieving the best performance for the eventually produced PEN/PS blends through SG copolymers. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 87: 967–975, 2003  相似文献   

7.
Dynamic vulcanization was successfully applied to epoxy resin reinforced polypropylene (PP)/ethylene‐octene copolymer (POE) blends, and the effects of different compatibilizers on the morphology and properties of dynamically cured PP/POE/epoxy blends were studied. The results show that dynamically cured PP/POE/epoxy blends compatibilized with maleic anhydride‐grafted polypropylene (MAH‐g‐PP) have a three‐phase structure consisting of POE and epoxy particles dispersed in the PP continuous phase, and these blends had improved tensile strength and flexural modulus. While using maleic anhydride‐grafted POE (MAH‐g‐POE) as a compatibilizer, the structure of the core‐shell complex phase and the PP continuous phase showed that epoxy particles could be embedded in MAH‐g‐POE in the blends, and gave rise to an increase in impact strength, while retaining a certain strength and modulus. DSC analysis showed that the epoxy particles in the blends compatibilized with MAH‐g‐PP were more efficient nucleating agents for PP than they were in the blends compatibilized with MAH‐g‐POE. WAXD analysis shows that compatibilization do not disturb the crystalline structure of PP in the blends. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

8.
The compatibilization effect of ethylene‐1‐octene copolymer grafted with glycidyl methacrylate (POE‐g‐GMA) as an interface compatibilizer on the mechanical and combustion properties, and the morphology and structures of the cross sections of ammonium polyphosphate (APP)–filled poly(propylene) (PP) were investigated by thermogravimetry, dynamic mechanical analysis, and differential scanning calorimetry. The results indicated that the toughness of the PP/APP composites increased rapidly with adding POE‐g‐GMA; the dynamic mechanical spectra revealed that the increase of the toughness was closely related to the peaks of loss modulus (E″) and mechanical loss (tan δ). The improvement of the dispersion of APP in the PP matrix was attributed to the addition of POE‐g‐GMA; it was found that the interfacial adhesion between the filler and matrix was enhanced when the grafting material was added to the composites. Under such circumstances, the ratio of char formation was increased when the PP composites were heated, although the content of flame retardant was not changed, so the flame retardance of the material was improved. The addition of POE‐g‐GMA increased the rate of crystallization. At the same time, the degree of crystallinity and the temperature at the beginning of crystallization were decreased, although exerting little influence on the melt behavior of the crystallization of the composites. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 412–419, 2004  相似文献   

9.
Poly(lactic acid) (PLA)/poly[(butylene adipate)‐co‐terephthalate] (PBAT) blends were fabricated by melt blending, with 2,2′‐(1,3‐phenylene)bis(2‐oxazoline) (BOZ) and phthalic anhydride (PA) used as compatibilizers. It was found that a small amount of BOZ or PA greatly increased the elongation at break of the PLA/PBAT blends without sacrificing their high tensile strength. Scanning electron microscopy results revealed that the PBAT particles became finer and were uniformly dispersed in the matrix when the compatibilizers were incorporated, which indicated that the interfacial bonding and compatibilization between PLA and PBAT were improved in the presence of the compatibilizers. Compared with PLA/PBAT blends, the molecular weight of PLA/PBAT/PA/BOZ blends was increased due to chain‐extending reactions. Differential scanning calorimetry results suggested PBAT decreased the crystallization rate and crystallinity of PLA in the blends. Moreover, the glass transition temperature of PBAT was further decreased when the compatibilizers were used. © 2013 Society of Chemical Industry  相似文献   

10.
BACKGROUND: Blocked isocyanate‐functionalized polyolefins have great potential for use in semicrystalline polymer blends to obtain toughened polymers. In this study, poly(butylene terephthalate) (PBT) was blended with allyl N‐[2‐methyl‐4‐(2‐oxohexahydroazepine‐1‐carboxamido)phenyl] carbamate‐functionalized poly(ethylene octene) (POE‐g‐AMPC). RESULTS: New peaks at 2272 and 1720 cm?1, corresponding to the stretching vibrations of NCO and the carbonyl of NH? CO? N, respectively, in AMPC, appeared in the infrared spectrum of POE‐g‐AMPC. Both rheological and X‐ray photoelectron spectroscopy results indicated a new copolymer was formed in the reactive blends. Compared to uncompatibilized PBT/POE blends, smaller dispersed particle sizes with narrower distribution were found in the compatibilized PBT/POE‐g‐AMPC blends. There was a marked increase in impact strength by about 10‐fold over that of PBT/POE blends with the same rubber content and almost 30‐fold higher than that of pure PBT when the POE‐g‐AMPC content was 25 wt%. CONCLUSION: The blocked isocyanate‐functionalized POE is an effective toughener for semicrystalline polymers. Super‐toughened PBT blends can be obtained when the POE‐g‐AMPC content is equal to or more than 15 wt%. Copyright © 2009 Society of Chemical Industry  相似文献   

11.
Poly(lactic acid) (PLA), a physical blend of PLA and thermoplastic cassava starch (TPCS) (PLA‐TPCS), and reactive blends of PLA with TPCS using maleic anhydride as compatibilizer with two different peroxide initiators [i.e., 2,5‐bis(tert‐butylperoxy)‐2,5‐dimethylhexane (L101) and dicumyl peroxide (DCP)] PLA‐g‐TPCS‐L101 and PLA‐g‐TPCS‐DCP were produced and characterized. Blends were produced using either a mixer unit or twin‐screw extruder. Films for testing were produced by compression molding and cast film extrusion. Morphological, mechanical, thermomechanical, thermal, and optical properties of the samples were assessed. Blends produced with the twin‐screw extruder resulted in a better grade of mixing than blends produced with the mixer. Reactive compatibilization improved the interfacial adhesion of PLA and TPCS. Scanning electron microscopy images of the physical blend showed larger TPCS domains in the PLA matrix due to poor compatibilization. However, reactive blends revealed smaller TPCS domains and better interfacial adhesion of TPCS to the PLA matrix when DCP was used as initiator. Reactive blends exhibited high values for elongation at break without an improvement in tensile strength. PLA‐g‐TPCS‐DCP provides promising properties as a tougher biodegradable film. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46140.  相似文献   

12.
In this article, for the first time in the literature effects of phenylene diisocyanate (PDI)‐based compatibilizer on the physical and chemical properties of citric acid (CA) modified thermoplastic starch (TPS)/poly(lactic acid) (PLA) blends were investigated with respect to PDI and CA content and blend composition. The blends were prepared by melt compounding in a laboratory microcompounder. Fourier transformation infrared spectroscopy results showed that CA interacted with starch and PDI interacted by both starch and PLA through the hydroxyl groups. It was revealed from SEM micrographs that combinatorial usage of CA and PDI resulted in an improved, finer distribution of TPS in PLA matrix. This improvement affected the mechanical properties of blend, especially the toughness related properties such as impact strength and elongation at break. The thermal properties such as Tg and Tm revealed from differential scanning calorimeter analysis were in line with the morphological structure of the blends by suggesting the compatibilization phenomena in the presence of PDI and CA together. Thermogravimetric analysis showed that compatibilization of two phases improved the thermal stability of the blends. As a general conclusion, the combinatorial usage of PDI and CA can be utilized to obtain tougher PLA/TPS blends‐based materials to overcome the brittleness problem. POLYM. ENG. SCI., 53:2183–2193, 2013. © 2013 Society of Plastics Engineers  相似文献   

13.
The blocked isocyanate group (BHI) was synthesized to improve the storage stability of HI (2‐hydroxyethyl methacrylate combined with isophorone diisocyanate) and characterized by Fourier transform infrared spectroscopy (FTIR). High‐density polyethylene grafted with the blocked isocyanate group (HDPE‐g‐BHI) was used as a reactive compatibilizer for an immiscible high‐density polyethylene/poly(ethylene terephthalate) (HDPE/PET) blend. A possible reactive compatibilization mechanism is that regenerated isocyanate groups of HDPE functionalized by BHI react with the hydroxyl and carboxyl groups of PET during melt blending. The HDPE‐g‐BHI/PET blend showed the smaller size of a dispersed phase compared to the HDPE/PET blend, indicating improved compatibility between HDPE and PET. This increased compatibility was due to the formation of an in situ graft copolymer, which was confirmed by dynamic mechanical analysis. Differential scanning calorimetry (DSC) analysis represented that there were few changes in the crystallinity for the continuous PET phase of the HDPE‐g‐BHI/PET blends, compared with those of the HDPE/PET blends at the same composition. Tensile strengths and elongations at the break of the HDPE‐g‐BHI/PET blends were greater than those of the HDPE/PET blends. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 78: 1017–1024, 2000  相似文献   

14.
Blends of polystyrene (PS) with polyolefin elastomer (POE) were prepared by a reactive extrusion method. In order to increase the compatibility of the two blending components, a Lewis acid catalyst, aluminium chloride (AlCl3), was adopted to initiate the Friedel–Crafts alkylation reaction. Fourier‐transform infrared (FTIR) spectra of the PS/POE/AlCl3 blends extracted with butanone verified the graft structure between the PS and POE. Because the in situ generated PS‐graft‐POE copolymers acted as compatibilizers, the mechanical properties of PS/POE blends were greatly improved. For example, after compatibilization, the Charpy impact strength of an 80/20 (wt%) PS/POE blend was increased from 6.29 to 8.50 kJ m?2. Scanning electron microscopy (SEM) showed that the size of the droplets decreased from 9–10 µm to less than 2 µm with the addition of AlCl3. Gel permeation chromatography (GPC) showed competition between the grafting reaction and the degradation of blending components in the presence of AlCl3. Copyright © 2005 Society of Chemical Industry  相似文献   

15.
Elastomer ethylene–butylacrylate–glycidyl methacrylate (PTW) containing epoxy groups were chosen as toughening modifier for poly(butylene terephthalate) (PBT)/polyolefin elastomer (POE) blend. The morphology, thermal, and mechanical properties of the PBT/POE/PTW blend were studied. The infrared spectra of the blends proved that small parts of epoxy groups of PTW reacted with carboxylic acid or hydroxyl groups in PBT during melt blending, resulting in a grafted structure which tended to increase the viscosity and interfere with the crystallization process of the blend. The morphology observed by scanning electron microscopy revealed the dispersed POE particles were well distributed and the interaction between POE and PBT increased in the PBT/POE/PTW blends. Mechanical properties showed the addition of PTW could lead to a remarkable increase about 10‐times in impact strength with a small reduction in tensile strength of PBT/POE blends. Differential scanning calorimetry results showed with increasing PTW, the crystallization temperature (Tc) and crystallinity (Xc) decreased while the melting point (Tm) slightly increased. Dynamic mechanical thermal analysis spectra indicated that the presence of PTW could improve the compatibility of PBT/POE blends. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40660.  相似文献   

16.
Blends of poly(ethylene‐co‐vinyl alcohol) (EVOH) with maleic anhydride‐grafted‐poly(ethylene‐octene) (POE‐g‐MAH) were prepared by blending extrusion in order to improve the toughness and flexibility of EVOH. The compatibility behavior of these blends with POE‐g‐MAH content range from 0 to 25 wt% was studied using mechanical, thermal, infrared, and morphology characterization techniques. The mechanical test results showed that POE‐g‐MAH can significantly improve the impact toughness of EVOH with a brittle‐tough transition appeared at the POE‐g‐MAH content of 20 wt%. A huge increase of toughness of the blend was also observed when the POE‐g‐MAH content was increased to 15 wt%. The thermal analysis of the blends demonstrated that the thermal stability of EVOH is improved with the addition of POE‐g‐MAH, adding 20 wt% or more POE‐g‐MAH can effectively decrease the crystallinity of EVOH and greatly improve compatibility between the two components. The existence of esterification between anhydride groups in POE‐g‐MAH and hydroxyl groups in EVOH in melt processing was confirmed using Fourier transform infrared technique. Morphology analysis of the Izod impact fractures has clearly shown the mechanisms for these blends to change from brittle to tough with increasing the POE‐g‐MAH content. POLYM. ENG. SCI., 53:2093–2101, 2013. © 2013 Society of Plastics Engineers  相似文献   

17.
Di(isononyl) cyclohexane‐1,2‐dicarboxylate (DINCH) was used as a new plasticizer for poly(lactic acid) (PLA), and the effects of DINCH and tributyl citrate ester (TBC) on the morphology, mechanical and thermal properties, and durability of PLA were compared. DINCH has limited compatibility with PLA, leading to PLA/DINCH blends with phase separation in which DINCH forms spherical dispersed phase. TBC is compatible with PLA and evenly distributed in PLA. Plasticized PLA with 10 and 20 phr DINCH have a constant glass transition temperature (Tg) of 50°C and are stiff materials with high elongation at break and impact strength. TBC could significantly decrease the Tg and increase the crystallinity of PLA, and PLA/TBC (100/20) blend is a soft material with a Tg of 24°C. The durability of plasticized PLA was characterized by weight loss measurement under water immersion, mechanical properties, and thermal analysis. The results reveal that PLA/DINCH blends have better water resistance and aging resistance properties than PLA/TBC blends, which is attributed to the relatively high hydrophobicity of DINCH and high Tg of PLA/DINCH blends. POLYM. ENG. SCI., 2009. © 2009 Society of Plastics Engineers  相似文献   

18.
To evaluate the compatibilization effects of an isocyanate group on poly(ethylene terephthalate)/polypropylene (PET/PP) blends through a reactive blend, PP grafted with 2‐hydroxyethyl methacrylate‐isophorone diisocyanate (PP‐g‐HI) was prepared and blended with PET. In view of the blend morphology, the presence of PP‐g‐HI reduced the particle size of the dispersed phase by the reduced interfacial tension between the PP and PET phases, indicating the in situ copolymer (PP‐g‐PET) generated during the melt blending. The DSC thermograms for the cooling run indicated that the PET crystallization in the PP‐g‐HI rich phase was affected by the chemical reactions of PET and PP‐g‐HI. The improved mechanical properties for the PET/PP‐g‐HI blends were shown in the measurement of the tensile and flexural properties. In addition, the water absorption test indicated that the PET/PP‐g‐HI blend was more effective than the PET/PP blend in improving the water resistance of PET. The positive properties of PET/PP‐g‐HI blends stemmed from the improved compatibilization of the PET/PP blend. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 1056–1062, 2001  相似文献   

19.
The effect of the addition of poly(styrene‐co‐glycidyl methacrylate) P(S‐co‐GMA) copolymer on the properties of melt blended polylactide/poly(methyl methacrylate) (PLA/PMMA) 80/20 (wt %) composition was studied. In the literature high ductility levels were achieved by melt blending PLA with different additives. However, the gained ductility was counter balanced with drastic drops in strength and modulus values. The novelty of this work was the preparation of PLA‐based blends with polylactide content higher than 75 wt % which showed an impact resistance value improvement of about 60% compared with the neat PLA and maintained similar tensile strength and modulus values as well as glass transition temperature to neat PLA. The addition of only 3 pph of copolymer to PLA/PMMA blend improved the impact resistance almost 100%. The chemical reaction between PLA/PMMA blend and P(S‐co‐GMA) copolymer were analyzed by FTIR, rotational rheometry, and GPC/SEC. Phase structure and morphology were studied by Differential Scanning Calorimetry and Scanning Electronic Microscopy. Tensile and impact properties as well as thermal stability were also studied. Results showed that as the amount of copolymer in the blend was increased then higher was average molecular weight and polydispersity index. After the addition of P(S‐co‐GMA) copolymer to the PLA/PMMA blend the impact resistance, elongation at break and thermal stability were improved while tensile strength and elastic modulus remained almost unaltered. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43935.  相似文献   

20.
To increase the compatibility of polystyrene (PS) and polyolefin elastomer (POE) blends, a Lewis acid catalyst, aluminum chloride (AlCl3), was adopted to initiate the Friedel–Crafts alkylation reaction for the formation of PS‐graft‐POE copolymer. Dynamic mechanical analysis indicated that PS/POE and PS/POE/AlCl3 blends are partially miscible, and the formation of PS‐graft‐POE copolymer increased the compatibility between PS and POE. Scanning electron microscope and transmission electron microscope results showed that the domain size of the blends decreased dramatically and the size distribution became more uniform with the addition of AlCl3. Such in situ compatibilization also induced hindrance to the macromolecular chain movement, as reflected by the results of the dynamic rheological analysis. The dynamic rheological behaviors of PS/POE and PS/POE/AlCl3 blends under different temperature showed that in situ compatibilization weakened the effects of thermooxidation on PS/POE blends. Moreover, in situ compatibilization decreased the activation energy of viscous flow and reduced the influence of temperature on PS/POE blends. POLYM. ENG. SCI., 47:951–959, 2007. © 2007 Society of Plastics Engineers  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号