首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The design and synthesis of a novel reduction‐sensitive, robust, and biocompatible vesicle (SSCB[6]VC) are reported, which is self‐assembled from an amphiphilic cucurbit[6]uril (CB[6]) derivative that contains disulfide bonds between hexaethylene glycol units and a CB[6] core. The remarkable features of SSCB[6]VC include: 1) facile, non‐destructive, non‐covalent, and modular surface modification using exceptionally strong host–guest chemistry; 2) high structural stability; 3) facile internalization into targeted cells by receptor‐mediated endocytosis, and 4) efficient triggered release of entrapped drugs in a reducing environment such as cytoplasm. Furthermore, a significantly increased cytotoxicity of the anticancer drug doxorubicin to cancer cells is demonstrated using doxorubicin‐loaded SSCB[6]VC, the surface of which is decorated with functional moieties such as a folate–spermidine conjugate and fluorescein isothiocyanate–spermidine conjugate as targeting ligand and fluorescence imaging probe, respectively. SSCB[6]VC with such unique features can be used as a highly versatile multifunctional platform for targeted drug delivery, which may find useful applications in cancer therapy. This novel strategy based on supramolecular chemistry and the unique properties of CB[6] can be extended to design smart multifunctional materials for biomedical applications including gene delivery.  相似文献   

2.
It is of great importance in drug delivery to fabricate multifunctional nanocarriers with intelligent targeting properties, for cancer diagnosis and therapy. Herein, hollow‐structured CuS@Cu2S@Au nanoshell/satellite nanoparticles are designed and synthesized for enhanced photothermal therapy and photoswitchable targeting theranostics. The remarkably improved photothermal conversion efficiency of CuS@Cu2S@Au under 808 nm near‐infrared (NIR) laser irradiation can be explained by the reduced bandgap and more circuit paths for electron transitions for CuS and Cu2S modified with Au nanoparticles, as calculated by the Vienna ab initio simulation package, based on density functional theory. By modification of thermal‐isomerization RGD targeting molecules and thermally sensitive copolymer on the surface of nanoparticles, the transition of the shielded/unshielded mode of RGD (Arg‐Gly‐Asp) targeting molecules and shrinking of the thermally sensitive polymer by NIR photoactivation can realize a photoswitchable targeting effect. After loading an anticancer drug doxorubicin in the cavity of CuS@Cu2S@Au, the antitumor therapy efficacy is greatly enhanced by combining chemo‐ and photothermal therapy. The reported nanohybrid can also act as a photoacoustic imaging agent and an NIR thermal imaging agent for real‐time imaging, which provides a versatile platform for multifunctional theranostics and stimuli‐responsive targeted cancer therapy.  相似文献   

3.
Effective drug delivery systems that can systematically and selectively transport payloads to disease cells remain a challenge. Here, a targeting ligand‐modified DNA origami nanostructure (DON) as an antibody–drug conjugate (ADC)‐like carrier for targeted prostate cancer therapy is reported. Specifically, DON of six helical bundles is modified with a ligand 2‐[3‐(1,3‐dicarboxy propyl)‐ureido] pentanedioic acid (DUPA) against prostate‐specific membrane antigen (PSMA), to serve as the antibody for drug conjugation in ADC. Doxorubicin (Dox) is then loaded to DON through intercalation to dsDNA. This platform features in spatially controllable organization of targeting ligands and high drug loading capacity. With this nanocomposite, selective delivery of Dox to the PSMA+ cancer cell line LNCaP is readily achieved. The consequent therapeutic efficacy is critically dependent on the numbers of targeting ligand assembled on DON. This target‐specific and biocompatible drug delivery platform with high maximum tolerated doses shows immense potential for developing novel nanomedicine.  相似文献   

4.
Targeted drug delivery remains at the forefront of biomedical research but remains a challenge to date. Herein, the first superassembly of nanosized metal–organic polyhedra (MOP) and their biomimetic coatings of lipid bilayers are described to synergistically combine the advantages of micelles and supramolecular coordination cages for targeted drug delivery. The superassembly technique affords unique hydrophobic features that endow individual MOP to act as nanobuilding blocks and enable their superassembly into larger and well‐defined nanocarriers with homogeneous sizes over a broad range of diameters. Various cargos are controllably loaded into the MOP with high payloads, and the nanocages are then superassembled to form multidrug delivery systems. Additionally, functional nanoparticles are introduced into the superassemblies via a one‐pot process for versatile bioapplications. The MOP superassemblies are surface‐engineered with epidermal growth factor receptors and can be targeted to cancer cells. In vivo studies indicated the assemblies to have a substantial circulation half‐life of 5.6 h and to undergo renal clearance—characteristics needed for nanomedicines.  相似文献   

5.
Compared to conventional top‐down photo‐cleavage method, a facile bottom‐up ink‐combination method to in situ and rapidly achieve water wettability and adhesion transition, with a great contrast on the superamphiphobic TiO2 nanostructured film, is described. Moreover, such combination method is suitable for various kinds of superamphiphobic substrate. Oil‐based ink covering or removing changes not only the topographical morphology but also surface chemical composition, and these resultant topographical morphology and composition engineering realize the site‐selectively switchable wettability varying from superamphiphobicity to amphiphilicity, and water adhesion between sliding superamphiphobicity and sticky superamphiphobicity in micro‐scale. Additionally, positive and negative micro‐pattern can be achieved by taking advantage of the inherent photocatalytic property of TiO2 with the assistance of anti‐UV light ink mask. Finally, the potential applications of the site‐selectively sticky superamphiphobic surface were demonstrated. In a proof‐of‐concept study, the microdroplet manipulation (storage, moving, mixing, and transfer), specific gas sensing, wettability template for positive and negative ZnO patterning, and site‐selective cell immobilization have been demonstrated. This study will give an important input to the field of advanced functional material surfaces with special wettability.  相似文献   

6.
Smart dynamic regulation structured surfaces, inspired by nature, which can dynamically change their surface topographies under external stimuli for convertible fluidic and optical properties, have recently motivated significant interest for scientific research and industrial applications. However, there is still high demand for the development of multifunctional dynamically transformable surfaces using facile preparation strategies. In this work, a type of Janus high‐aspect‐ratio magnetically responsive microplates array (HAR‐MMA) is readily fabricated by integrating a flexible laser scanning strategy, smart shape‐memory‐polymer‐based soft transfer, and a simple surface treatment. By applying external magnetic field, instantaneous and reversible deformation of Janus HAR‐MMA can be actuated, so surface wettability can be reversibly switched between superhydrophobic (158°) and hydrophilic (40°) states, based on which a novel magnetically responsive water droplet switch can be realized. Moreover, inspired by the biological assimilatory coloration of chameleons, dynamically color conversion can be skillfully realized by applying different colors on each side of the Janus HAR‐MMA. Finally, as a proof‐of‐concept demonstration in light manipulation, a HAR‐MMA is applied as an optical shutter actuated by external magnetic field with eximious controllability and repeatability. The developed multifunctional HAR‐MMA provides a versatile platform for microfluidic, biomedical, and optical applications.  相似文献   

7.
To overcome current limitations in diagnostic imaging and targeted drug delivery, a highly versatile tool is presented that can be used to representatively investigate the effects of submicroparticles intended for the use in biological systems. An effective approach to render colloids trackable is developed by stable attachment of the fluorescent probe BODIPY 493/503 (BOD: 4,4-difluoro-1,3,5,7,8-pentamethyl-4-bora-3a,4a-diaza-s-indacene) to a biodegradable and biocompatible particle core matrix. BOD submicroparticles are shown to be stable, can be surface modified, and exhibit high fluorescence emission. Upon conjugation with human serum albumin (nonspecific) and wheat germ agglutinin (biorecognitive) as model ligands explicit differences are found in the cytoadhesive and cytoinvasive characteristics of the submicroparticles using Caco-2 cells. These results demonstrate the potency of BOD-labeled colloids as a versatile analytical platform for a multifaceted investigation of cell-particle interactions in biological systems.  相似文献   

8.
Spider silk has recently become a material of high interest for a large number of biomedical applications. Previous work on structuring of silk has resulted in particles (0D), fibers (1D), films (2D), and foams, gels, capsules, or microspheres (3D). However, the manufacturing process of these structures is complex and involves posttreatment of chemicals unsuitable for biological applications. In this work, the self‐assembly of recombinant spider silk on micropatterned superhydrophobic surfaces is studied. For the first time, structuring of recombinant spider silk is achieved using superhydrophobic surfaces under conditions that retain the bioactivity of the functionalized silk. By tuning the superhydrophobic surface geometry and the silk solution handling parameters, this approach allows controlled generation of silk coatings, nanowires, and sheets. The underlying mechanisms and governing parameters are discussed. It is believed that the results of this work pave the way for fabrication of silk formations for applications including vehicles for drug delivery, optical sensing, antimicrobial coatings, and cell culture scaffolds.  相似文献   

9.
Compartmentalized particles enable co-presentation of dissimilar sets of properties, thereby offering a broad design space for multifunctional particles. Electrohydrodynamic co-jetting is a simple, yet versatile fabrication technique that can be used to prepare such multicompartmental particles and fibers. Processing conditions are summarized for co-jetting of aqueous and organic polymer solutions as well as nanoparticle suspensions. Because particles can comprise distinct polymers in different compartments, selective surface modification becomes possible. The latter can result in unidirectional interactions with cells or may pave new routes towards targeted drug delivery.  相似文献   

10.
During the last decade, using versatile, promising, and fascinating mesoporous silica nanoparticles (MSNs) as site‐specific and stimuli‐responsive drug delivery systems (DDSs) has received concentrated research interest. As one of the most attractive surface modification units, peptides have inherent bioactivity, biodegradability and biocompatibility. Recent progresses in the utilization of versatile peptides for surface functionalization of MSNs to achieve cell‐specific targeting, fluorescence imaging, and intracellular diagnosis and treatment of tumors are summarized in this review. The various functional peptides decorated on the MSNs are introduced and classified into three types, including targeting peptides, stimuli‐responsive peptides and multifunctional chimeric peptides. The limitations and challenges of peptide modified MSNs and their potential applications are further discussed.  相似文献   

11.
We present a facile method to fabricate hydrophilic patterns in superhydrophobic Si nanowire (NW) arrays for guiding water droplets. The superhydrophobic Si NW arrays were obtained by simple dip-coating of dodecyltrichlorosilane (DTS). The water contact angles (CAs) of DTS-coated Si NW arrays drastically increased and saturated at the superhydrophobic regime (water CA ≥ 150°) as the lengths of NWs increased. The demonstrated superhydrophobic surfaces show an extreme water repellent property and small CA hysteresis of less than 7°, which enable the water droplets to easily roll off. The wettability of the DTS-coated Si NW arrays can be converted from superhydrophobic to hydrophilic via UV-enhanced photodecomposition of the DTS, and such wettability conversion was reproducible on the same surfaces by repeating the DTS coating and photodecomposition processes. The resulting water guiding tracks were successfully demonstrated via selective patterning of the hydrophilic region on superhydrophobic Si NW arrays, which could enable water droplets to move along defined trajectories.  相似文献   

12.
Fluoropolymer and different kinds of silica particles were used for controlling surface chemistry and morphology, respectively. A superhydrophobic surface originated from strawberry-like or quincunx-shaped composite silica particles was obtained. The dual size particles are obtained by utilizing the graft of different modified silica particles with epoxy functional group and amine functional group, This makes the surface of film form a composite interface to have irregular binary structure which plays an essential role in trapping air between the substrate surface and the liquid droplets to be necessary for high contact angle and low contact angle hysteresis. The maximum contact angle for water on the hybrid film is about 174±2° and the contact angle hysteresis is less than 2°. The surface morphologies, roughness and the wettability on the surface of films containing different structural silica particles were compared. It was shown that the hierarchical irregularly structure with a low roughness factor and high air-trapped ratio is indispensable for superhydrophobic surface. Although this structural surfaces based on composite silica particles play a vital role in governing the surface wettability, it is necessary to combine with a low surface energy to make the surface superhydrophobic.  相似文献   

13.
The absence of targeted, single treatment methods produces low therapeutic value for treating cancers. To increase the accumulation of drugs in tumors and improve the treatment effectiveness, near‐infrared 808 nm photothermal responsive dual aptamers‐targeted docetaxel (DTX)‐containing nanoparticles is proposed. In this system, DTX and NH4HCO3 are loaded in thermosensitive liposomes. The surface of liposomes is coated with gold nanoshells and connected with sulfydryl (SH? ) modified AS1411 and S2.2 aptamers. The nanosystem has good biocompatibility and uniform size (diameter about 200 nm). The drug is rapidly released, reaching a maximum amount (84%) at 4 h under 808 nm laser irradiation. The experiments conducted in vitro and in vivo demonstrate the nanosystem can synergistically inhibit tumor growth by combination of chemotherapy, photothermal therapy, and biological therapy. Dual ligand functionalization significantly increases cellular uptake on breast cancer cell line (MCF‐7) cells and achieves ultrasound imaging (USI) at tumor site. The results indicate that this drug delivery system is a promising theranostic agent involving light‐thermal response at tumor sites, dual ligand targeted triplex therapy, and USI.  相似文献   

14.
With the impacts of climate change and impending crisis of clean drinking water, designing functional materials for water harvesting from fog with large water capacity has received much attention in recent years. Nature has evolved different strategies for surviving dry, arid, and xeric conditions. Nature is a school for human beings. In this contribution, inspired by the Stenocara beetle, superhydrophilic/superhydrophobic patterned surfaces are fabricated on the silica poly(dimethylsiloxane) (PDMS)‐coated superhydrophobic surfaces using a pulsed laser deposition approach with masks. The resultant samples with patterned wettability demonstrate water‐harvesting efficiency in comparison with the silica PDMS‐coated superhydrophobic surface and the Pt nanoparticles‐coated superhydrophilic surface. The maximum water‐harvesting efficiency can reach about 5.3 g cm?2 h?1. Both the size and the percentage of the Pt‐coated superhydrophilic square regions on the patterned surface affect the condensation and coalescence of the water droplet, as well as the final water‐harvesting efficiency. The present water‐harvesting strategy should provide an avenue to alleviate the water crisis facing mankind in certain arid regions of the world.  相似文献   

15.
The Flow Focusing platform is especially advantageous for micro- and nanoparticle production. This versatile technique is amenable to designing the size, surface treatment and internal topology of the particles; mechanical stresses are minimal-an optimal feature for the manipulation of delicate substances. Multiplexing and high-rate production are readily implemented. Adaptive operational design can lead, in one single step, to finely tuned microcapsules encasing different products within a targeted morphology. This achievement is of great significance for most microcapsule applications in the biosciences (for example, drug delivery, cell encapsulation, and the production of bead arrays).  相似文献   

16.
利用激光加工在铝合金表面进行微织构,通过自组装工艺在微织构表面修饰有机硅烷分子膜,制备得到具有疏水/超疏水性表面。利用扫描电镜、三维形貌仪、接触角测量仪对微织构表面微观形貌和润湿性进行表征。结果表明:激光微织构具有的微米级粗糙结构与自组装分子膜的共同作用对超疏水表面的构建具有重要作用;接触角随激光微织构加工间距(50~100μm)的减小而增大,且与微织构的形貌类型相关。漂浮承载实验表明,超疏水表面符合Cassie-Baxter状态模型,且可有效提高平台的漂浮承载能力。  相似文献   

17.
This study introduces multifunctional lipid nanoparticles (LNPs), mimicking the structure and compositions of low‐density lipoproteins, for the tumor‐targeted co‐delivery of anti‐cancer drugs and superparamagnetic nanocrystals. Paclitaxel (4.7 wt%) and iron oxide nanocrystals (6.8 wt%, 11 nm in diameter) are co‐encapsulated within folate‐functionalized LNPs, which contain a cluster of nanocrystals with an overall diameter of about 170 nm and a zeta potential of about ‐40 mV. The folate‐functionalized LNPs enable the targeted detection of MCF‐7, human breast adenocarcinoma expressing folate receptors, in T2‐weighted magnetic resonance images as well as the efficient intracellular delivery of paclitaxel. Paclitaxel‐free LNPs show no significant cytotoxicity up to 0.2 mg mL?1, indicating the excellent biocompatibility of the LNPs for intracellular drug delivery applications. The targeted anti‐tumor activities of the LNPs in a mouse tumor model suggest that the low‐density lipoprotein‐mimetic LNPs can be an effective theranostic platform with excellent biocompatibility for the tumor‐targeted co‐delivery of various anti‐cancer agents.  相似文献   

18.
Biomimetic functional surfaces are attracting increasing attention for various technological applications, especially the superhydrophobic surfaces inspired by plant leaves. However, the replication of the complex hierarchical microstructures is limited by the traditional fabrication techniques. In this paper, superhydrophobic micro‐scale artificial hairs with eggbeater heads inspired by Salvinia molesta leaf was fabricated by the Immersed surface accumulation three dimensional (3D) printing process. Multi‐walled carbon nanotubes were added to the photocurable resins to enhance the surface roughness and mechanical strength of the microstructures. The 3D printed eggbeater surface reveals interesting properties in terms of superhydrophobilicity and petal effect. The results show that a hydrophilic material can macroscopically behave as hydrophobic if a surface has proper microstructured features. The controllable adhesive force (from 23 μN to 55 μN) can be easily tuned with different number of eggbeater arms for potential applications such as micro hand for droplet manipulation. Furthermore, a new energy‐efficient oil/water separation solution based on our biomimetic structures was demonstrated. The results show that the 3D‐printed eggbeater structure could have numerous applications, including water droplet manipulation, 3D cell culture, micro reactor, oil spill clean‐up, and oil/water separation.  相似文献   

19.
By controlling the surface nanostructure, the wettability of films with similar pore-array microstructure can be tuned from hydrophilic to nearly superhydrophobic without variation of the chemical composition. PA1 pore-array film consisting of the horizontal ZnO nanosheets was nearly superhydrophobic. PA2 pore-array film consisting of growth-hindered vertically-aligned ZnO nanorods was hydrophilic. The influences of the nanostructure shape, orientation and the micropore size on the contact angle of the PA1 films were studied. This study provides a new approach to control the wettability of films with similar pore-array structure at the micro-scale by changing their surface nanostructure. PA1 films exhibited irradiation induced reversible wettability transition. The feasibility of creating a wetted radial pattern by selective UV irradiation of PA1 film through a mask with radial pattern and water vapor condensation was also evaluated.  相似文献   

20.
Covalent organic frameworks (COFs), connecting different organic units into one system through covalent bonds, are crystalline organic porous materials with 2D or 3D networks. Compared with conventional porous materials such as inorganic zeolite, active carbon, and metal‐organic frameworks, COFs are a new type of porous materials with well‐designed pore structure, high surface area, outstanding stability, and easy functionalization at the molecular level, which have attracted extensive attention in various fields, such as energy storage, gas separation, sensing, photoluminescence, proton conduction, magnetic properties, drug delivery, and heterogeneous catalysis. Herein, the recent advances in metal‐free COFs as a versatile platform for heterogeneous catalysis in a wide range of chemical reactions are presented and the synthetic strategy and promising catalytic applications of COF‐based catalysts (including photocatalysis) are summarized. According to the types of catalytic reactions, this review is divided into the following five parts for discussion: achiral organic catalysis, chiral organic conversion, photocatalytic organic reactions, photocatalytic energy conversion (including water splitting and the reduction of carbon dioxide), and photocatalytic pollutant degradation. Furthermore, the remaining challenges and prospects of COFs as heterogeneous catalysts are also presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号