首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Four series of aromatic polyimides (PIs V–VIII) composed of biphenyltetracarboxylic dianhydrides (BPDAs) and aromatic diamines bearing alkylene spacers were prepared by two methods. Most polymers could be readily prepared in a one‐step method for the combination of a‐BPDA with α,ω‐bis(3‐aminophenoxy)alkanes, a‐BPDA with α,ω‐bis(4‐aminophenoxy)alkanes, and s‐BPDA with α,ω‐bis(3‐aminophenoxy)alkanes. However, the polymerization of s‐BPDA with α,ω‐bis(4‐aminophenoxy)alkanes gave powders. On the other hand, all four monomer combinations afforded the desired polyamic acid solution in a two‐step method. These polymer solutions could be cast into tough and flexible films, which were characterized by their inherent viscosity, differential scanning calorimetry, thermogravimetric analysis, and dynamic mechanical spectrometry measurements. The glass transition temperatures (Tgs) of the polymers were in the range of 110–240°C, but they were not clearly defined for PIs VIII and VI. The 5% weight loss temperatures were around 450°C for all prepared PIs. For PI VIII an “odd–even” behavior of the tensile properties of the films was detected, corresponding to the reported behavior of the melting temperatures. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 2404–2413, 1999  相似文献   

2.
A series of new thermotropic main‐chain liquid crystalline copolyesters were prepared by polycondensation of 2,6‐naphthalenedicarbonyl chloride, 4,4′‐thiodiphenol, and α,ω‐alkanediols (n = 4–10) in diphenyl ether at 200°C. Thermal transition behaviors of these copolyesters were investigated by differential scanning calorimetry. Moreover, their thermal stabilities and mesomorphic textures were studied by thermogravimetric analysis and polarizing optical microscopy, respectively. Corresponding model compounds with terminal mesogenic units and central polymethylene spacers were also synthesized for comparison. Both copolymers and model compounds exhibit odd–even dependency of melting temperatures, transition enthalpy (ΔHm), and entropy (ΔSm) on the number of methylene units in the spacer. However, the odd–even effects in model compounds are much more distinctive. Nematic mesophases are the only texture observed in melts, except the model compounds with longer methylene units (n = 8, 10), in which smectic mesophases can be observed. The Tm values of the copolyesters (TDP/HD = 1/1) are between 233 and 259°C, depending on spacer length. The initial decomposition temperatures of the copolyesters are above 419°C under N2 atmosphere. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 83: 1536–1546, 2002  相似文献   

3.
A series of novel thermoplastic elastomers based on ABA‐type triblock prepolymers, poly[(propylene oxide)–(dimethylsiloxane)–(propylene oxide)] (PPO‐PDMS‐PPO), as the soft segments, and poly(butylene terephthalate) (PBT), as the hard segments, was synthesized by catalyzed two‐step melt transesterification of dimethyl terephthalate (DMT) with 1,4‐butanediol (BD) and α,ω‐dihydroxy‐(PPO‐PDMS‐PPO) (M?n = 2930 g mol?1). Several copolymers with a content of hard PBT segments between 40 and 60 mass% and a constant length of the soft PPO‐PDMS‐PPO segments were prepared. The siloxane‐containing triblock prepolymer with hydrophilic terminal PPO blocks was used to improve the compatibility between the polar comonomers, i.e. DMT and BD, and the non‐polar PDMS segments. The structure and composition of the copolymers were examined using 1H NMR spectroscopy, while the effectiveness of the incorporation of α,ω‐dihydroxy‐(PPO‐PDMS‐PPO) prepolymer into the copolyester chains was controlled by chloroform extraction. The effect of the structure and composition of the copolymers on the transition temperatures (Tm and Tg) and the thermal and thermo‐oxidative degradation stability, as well as on the degree of crystallinity, and some rheological properties, were studied. Copyright © 2006 Society of Chemical Industry  相似文献   

4.
A random terpolymer of L ‐lactide (LL), ?‐caprolactone (CL) and glycolide (G) has been synthesized in bulk at 130 °C using stannous octoate as the coordination–insertion initiator. The terpolymer, poly(LL‐ran‐CL‐ran‐G), has been characterized by a combination of analytical techniques: GPC, 1H NMR, 13C NMR, DSC and TG. Molecular weight characterization by GPC shows a unimodal molecular weight distribution with values of M n = 1.01 × 105 g mol?1 and M w / M n = 2.17. Compositional and microstructural analysis by 1H NMR and 13C NMR, respectively, reveal a terpolymer composition of LL:CL:G = 74:15:11 (mol%) with a chain microstructure consistent with random monomer sequencing. This latter view is supported by the terpolymer temperature transitions (Tg and Tm) from DSC and the thermal decomposition profile from TG. The results and, in particular, the conclusion that it is a random rather than a statistical terpolymer are discussed in the light of current theories regarding the mechanism of this type of polymerization. © 2001 Society of Chemical Industry  相似文献   

5.
3,4‐Di‐(2′‐hydroxyethoxy)‐4′‐nitrostilbene (2) was prepared by the reaction of 2‐iodoethanol with 3,4‐dihydroxy‐4′‐nitrostilbene. Diol 2 was condensed with 2,4‐toluenediisocyanate, 3,3′‐dimethoxy‐4,4′‐biphenylenediisocyanate and 1,6‐hexamethylenediisocyanate to yield novel Y‐type polyurethanes 3–5 containing dioxynitrostilbene as a non‐linear optical (NLO)‐chromophore. Polymers 3–5 were soluble in common organic solvents, such as acetone and DMF. These polymers showed thermal stability up to 280 °C in TGA thermograms with Tg values in the range of 100–143 °C in DSC thermograms. The approximate lengths of aligned NLO‐chromophores of the polymers estimated from AFM images were around 2 nm. The SHG coefficients (d33) of poled polymer films were around 4.5 × 10?8 esu. Poled polymer films had improved temporal and long‐term thermal stability owing to the hydrogen bonding of urethane linkage and the main‐chain character of the polymer structure, which are acceptable for NLO device applications. Copyright © 2004 Society of Chemical Industry  相似文献   

6.
A novel bismaleimide, 2,2′‐dimethyl‐4,4′‐bis(4‐maleimidophenoxy)biphenyl, containing noncoplanar 2,2′‐dimethylbiphenylene and flexible ether units in the polymer backbone was synthesized from 2,2′‐dimethyl‐4,4′‐bis(4‐aminophenoxy)biphenyl with maleic anhydride. The bismaleimide was reacted with 11 diamines using m‐cresol as a solvent and glacial acetic acid as a catalyst to produce novel polyaspartimides. Polymers were identified by elemental analysis and infrared spectroscopy, and characterized by solubility test, X‐ray diffraction, and thermal analysis (differential scanning calorimetry and thermogravimetric analysis). The inherent viscosities of the polymers varied from 0.22 to 0.48 dL g−1 in concentration of 1.0 g dL−1 of N,N‐dimethylformamide. All polymers are soluble in N‐methyl‐2‐pyrrolidone, N,N‐dimethylacetamide, N,N‐dimethylformamide, dimethylsulfoxide, pyridine, m‐cresol, and tetrahydrofuran. The polymers, except PASI‐4, had moderate glass transition temperature in the range of 188°–226°C and good thermo‐oxidative stability, losing 10% mass in the range of 375°–426°C in air and 357°–415°C in nitrogen. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 73: 279–286, 1999  相似文献   

7.
A series of photosensitive poly(ether–ester)s containing α,β‐unsaturated ketone moieties in the main chain were synthesized from 2,6‐bis[4‐(3‐hydroxypropyloxy)‐3‐methoxybenzylidene]cyclohexanone (BHPMBCH) and aliphatic and aromatic diacid chlorides. The diol precursor, BHPMBCH, was synthesized from 2,6‐bis(4‐hydroxy‐3‐methoxybenzylidene)cyclohexanone and 3‐bromo‐1‐propanol. The solubility of the polymers was tested in various solvents. The intrinsic viscosity of the synthesized polymers, determined by an Oswald viscometer, was found to be 0.06–0.80 g/dL. The molecular structures of the monomer and polymers were confirmed by Fourier transform infrared, ultraviolet–visible, 1H‐NMR, and 13C‐NMR spectral analyses. The thermal properties were studied with thermogravimetric analysis and differential scanning calorimetry. The thermogravimetric analysis data revealed that the polymers were stable up to 220°C and started degrading thereafter. The thermal stability initially increased with increasing spacer length and then decreased due to negative effects of the spacer. The self‐extinguishing properties of the synthesized polymers were studied by the determination of the limiting oxygen index values with Van Krevelen's equation. In addition, the photocrosslinking properties of the polymer chain were studied with UV spectroscopy, and we observed that the rate of photocrosslinking increased significantly with increasing methylene carbon chain length of the acid spacer. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

8.
The electrostatic charge dissipative (ESD) properties of conducting self‐doped and PTSA-doped copolymers of aniline (AA), o‐methoxyaniline (methoxy AA) and o‐ethoxyaniline (ethoxy AA) with 3‐aminobenzenesulfonic acid (3‐ABSA) blended with low‐density polyethylene (LDPE) were investigated in the presence of external dopant p‐toluenesulfonic acid (PTSA). Blending of copolymers with LDPE was carried out in a twin‐screw extruder by melt blending by loading 1.0 and 2.0 wt% of conducting copolymer in the LDPE matrix. The conductivity of the blown polymers blended with LDPE was in the range 10?12–10?6 S cm?1, showing their potential use as antistatic materials for the encapsulation of electronic equipment. The DC conductivity of all self‐doped homopolymers and PTSA‐doped copolymers was measured in the range 100–373 K. The room temperature conductivity (S cm?1) of self‐doped copolymers was: poly(3‐ABSA‐co‐AA), 7.73 × 10?4; poly(3‐ABSA‐co‐methoxy AA), 3.06 × 10?6; poly(3‐ABSA‐co‐ethoxy AA), 2.99 × 10?7; and of PTSA‐doped copolymers was: poly(3‐ABSA‐co‐AA), 4.34 × 10?2; poly(3‐ABSA‐co‐methoxy AA), 9.90 × 10?5; poly(3‐ABSA‐co‐ethoxy AA), 1.10 × 10?5. The observed conduction mechanism for all the samples could be explained in terms of Mott's variable range hopping model; however, ESD properties are dependent upon the electrical conductivity. The antistatic decay time is least for the PTSA‐doped poly(3‐ABSA‐co‐AA), which has maximum conductivity among all the samples. © 2013 Society of Chemical Industry  相似文献   

9.
The physical properties of novel thermoplastic random copolyesters [‐(CH2)n‐COO‐/‐(CH2)n‐COO‐]x made of long (n = 12) and medium (n = 8) chain length ω‐hydroxyfatty esters [HO‐(CH2)n‐COOCH3] derived from bio‐based vegetable oil feedstock are described. Poly(ω‐hydroxy tridecanoate/ω‐hydroxy nonanoate) P(?Me13?/?Me9?) random copolyesters (Mn = 11,000–18,500 g/mol) with varying molar ratios were examined by TGA, DSC, DMA and tensile analysis, and WAXD. For the whole range of P(?Me13?/?Me9?) compositions, the WAXD data indicated an orthorhombic polyethylene‐like crystal packing. Their melting characteristics, determined by DSC, varied with composition suggesting an isomorphic cocrystallization behavior. TGA of the P(?Me13?/?Me9?)s indicated improved thermal stability determined by their molar compositions. The glass transition temperature, investigated by DMA, was also found to vary with composition. The crystallinities of P(?Me13?/?Me9?)s however, were unaffected by the composition. The stiffness (Young's modulus) of these materials was found to be related to their degrees of crystallinity. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40492.  相似文献   

10.
BACKGROUND: Wholly aromatic polyamides (aramids) are high‐performance polymeric materials with outstanding heat resistance and excellent chemical stabilities due to chain stiffness and intermolecular hydrogen bonding of amide groups. Synthesis of structurally well‐designed monomers is an effective strategy to prepare modified forms of these aramids to overcome lack of organo‐solubility and processability limitations. RESULTS: A novel class of wholly aromatic polyamides was prepared from a new diamine, namely 2,2′‐bis(p‐phenoxyphenyl)‐4,4′‐diaminodiphenyl ether (PPAPE), and two simple aromatic dicarboxylic acids. Two reference polyamides were also prepared by reacting 4,4′‐diaminodiphenyl ether with the same comonomers under similar conditions. M?w and M?n of the resultant polymers were 8.0 × 104 and 5.5 × 104 g mol?1, respectively. Polymers resulting from PPAPE exhibited a nearly amorphous nature. These polyamides exhibited excellent organo‐solubility in a variety of polar solvents and possessed glass transition temperatures up to 200 °C. The 10% weight loss temperatures of these polymers were found to be up to 500 °C under a nitrogen atmosphere. The polymers obtained from PPAPE could be cast into transparent and flexible films from N,N‐dimethylacetamide solution. CONCLUSION: The results obtained show that the new PPAPE diamine can be considered as a good monomer to enhance the processability of its resultant aromatic polyamides while maintaining their high thermal stability. The observed characteristics of the polyamides obtained make them promising high‐performance polymeric materials. Copyright © 2009 Society of Chemical Industry  相似文献   

11.
Novel biodegradable chemically crosslinked polymers, poly(5‐hydroxylevulinic acid‐co‐α,ω‐diol)s (PHLA‐diols), were synthesized from 5‐hydroxylevulinic acid and α,ω‐diols and characterized by Fourier transform infrared spectroscopy, differential scanning calorimetry, thermogravimetric analysis, and dynamic mechanical analysis. The gel content, swelling ratio, tensile properties, and hydrolytic degradation behaviors were also measured and assessed. The glass‐transition temperature of the PHLA‐diols could be adjusted within a wide range (?50 to 30°C) by the type and feed ratio of the diol. Because of the low glass‐transition temperature and crosslink structure, they exhibited certain elastic properties. The tensile modulus, strength, and elongation at break measured at 37°C were 1.4–6.3 MPa, 0.8–1.6 MPa, and 10–25%, respectively. These polymers could be hydrolytically degraded. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

12.
Reactions of N‐(2,4‐dinitrophenyl)‐4‐arylpyridinium chlorides (aryl (Ar) = phenyl and 4‐biphenyl) with piperazine or homopiperazine caused opening of the pyridinium ring and yielded polymers that consisted of 5‐piperazinium‐3‐arylpenta‐2,4‐dienylideneammonium chloride (? N(CH2CH2)2N+ (Cl?)?CH? CH?C(Ar)? CH?CH? ) or 5‐homopiperazinium‐3‐arylpenta‐2,4‐dienylideneammonium chloride (? N(CH2CH2CH2)(CH2CH2)N+ (Cl?)?CH? CH?C(Ar)? CH?CH? ) units. 1H NMR spectral analysis suggested that the π‐electrons of the penta‐2,4‐dienylideneammonium group of the polymers were delocalized. UV‐visible spectral measurements revealed that the π‐conjugation system expanded along the polymer chains because of the orbital interaction between electrons of the two nitrogen atoms of the piperazinium and homopiperazinium rings. However, the π‐conjugation length depended on the distance between the two nitrogen atoms; that is, the polymers containing the piperazinium ring had a longer π‐conjugation length than those containing the homopiperazinium ring. Conversion of the piperazinium and homopiperazinium rings from the boat to the chair form led to a decrease in the π‐conjugation length. The surface of pellets that were molded from the polymers exhibited metallic luster, and these polymers underwent electrochemical oxidation in solution. Copyright © 2010 Society of Chemical Industry  相似文献   

13.
Well‐defined side‐chain liquid crystalline star‐shaped polymers were synthesized with a combination of the “core‐first” method and atom transfer radical polymerization (ATRP). Firstly, the functionalized macroinitiator based on the α‐Cyclodextrins (α‐CD) bearing functional bromide groups was synthesized, confirmed by 1H‐NMR, MALDI‐TOF, and FTIR analysis. Secondly, the side‐chain liquid crystalline arms poly[6‐(4‐methoxy‐4‐oxy‐azobenzene) hexyl methacrylate] (PMMAzo) were prepared by ATRP. The characterization of the star polymers were performed with 1H‐NMR, gel permeation chromatography (GPC), differential scanning calorimetry (DSC) and thermal polarized optical microscopy (POM). It was found that the liquid crystalline behavior of the star polymer α‐CD‐PMMAzon was similar to that of the linear homopolymer. The phase‐transition temperatures from the smectic to nematic phase and from the nematic to isotropic phase increased as the molecular weight increased for most of these samples. All star‐shaped polymers show photoresponsive isomerization under the irradiation with Ultraviolet light. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

14.
In this article, two novel benzobisthiazole‐containing hyperbranched polyamides with different end groups were synthesized, by adjusting the feed molar ratio of the reaction monomers, using 1,3,5‐benzenetricarboxylic acid and 2,6‐diaminobenzo[1,2‐d:4,5‐d']bisthiazole as monomers, polyphosphoric acid as solvent, and catalyst. The molecular structure of the synthesized hyperbranched polymers were speculated by 1H‐nuclear magnetic resonance (NMR) analysis, 13C‐NMR analysis, and Fourier transform infrared analysis. The Mn, Mw, and DB of the carboxyl terminated polymer HB‐COOH are 3264 g/mol, 3350 g/mol, and 44.1%, respectively, with a polydispersity of 1.03. The Mn, Mw, and DB of amino terminated polymer HB‐NH2 are 3340 g/mol, 3420 g/mol, and 41.7%, respectively, with a polydispersity of 1.02. The thermal stability of HB‐NH2 was higher than HB‐COOH in the range of 30 °C–800 °C.These two benzobisthiazole‐containing hyperbranched polyamides were completely amorphous and soluble in DMSO. Their DMSO solutions exhibited strong blue fluorescence. The fluorescent intensity of HB‐NH2 was higher than HB‐COOH. The prepared polymers were potential useful in the area of blue light emitting and display. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43453.  相似文献   

15.
The quantitative syntheses of α‐bis and α,ω‐tetrakis tertiary diamine functionalized polymers by atom transfer radical polymerization (ATRP) methods are described. A tertiary diamine functionalized 1,1‐diphenylethylene derivative, 1,1‐bis[(4‐dimethylamino)phenyl]ethylene (1), was evaluated as a unimolecular tertiary diamine functionalized initiator precursor as well as a functionalizing agent in ATRP reactions. The ATRP of styrene, initiated by a new tertiary diamine functionalized initiator adduct (2), affords the corresponding α‐bis(4‐dimethylaminophenyl) functionalized polystyrene (3). The tertiary diamine functionalized initiator adduct (2) was prepared in situ by the reaction of (1‐bromoethyl)benzene with 1,1‐bis[(4‐dimethylamino)phenyl]ethylene (1) in the presence of a copper (I) bromide/2,2′‐bipyridyl catalyst system. The ATRP of styrene proceeded via a controlled free radical polymerization process to afford quantitative yields of the corresponding α‐bis(4‐dimethylaminophenyl) functionalized polystyrene derivative (3) with predictable number‐average molecular weight (Mn) and narrow molecular weight distribution (Mw/Mn) in a high initiator efficiency reaction. The polymerization process was monitored by gas chromatography analysis. Quantitative yields of α,ω‐tetrakis(4‐dimethylaminophenyl) functionalized polystyrene (4) were obtained by a new post ATRP chain end modification reaction of α‐bis(4‐dimethylaminophenyl) functionalized polystyrene (3) with excess 1,1‐bis[(4‐dimethylamino)phenyl]ethylene (1). The tertiary diamine functionalized initiator precursor 1,1‐bis[(4‐dimethylamino)phenyl]ethylene (1) and the different tertiary amine functionalized polymers were characterized by chromatography, spectroscopy and non‐aqueous titration measurements. Copyright © 2012 Society of Chemical Industry  相似文献   

16.
In this study, a series of aliphatic–aromatic poly(butylene terephthalate‐co‐ε‐caprolactone) (PBTCL) copolyesters were synthesized from various monomeric compositions of terephthalic acid (TPA), 1,4‐butanediol (BDO), and ε‐caprolactone (CL) in the presence of tetrabutyl titanate (Ti(Obu)4) and stannous octoate (Sn(Oct)2) as catalysts through a combination of polycondensation and ring opening polymerization. A significant increase in the melting temperature (Tm) of copolyesters was observed by increasing the TPA/(CL+TPA) molar ratio, starting from the low end (Tm 66.2°C) of pure poly‐ε‐caprolactone PCL upward. We found that PBTCL‐50, which has a TPA/(CL+TPA) 50% molar ratio and polycondensation at 260°C for 1.5 h, resulted in a proper Tm of 139.2°C that facilitates thermal extrusion from biomass or other biodegradable polymers of similar Tm. The number–average molecular weight (Mn) of 7.4 × 104 for PBTCL‐50 was determined from the intrinsic viscosity [η] by using the Berkowitz model of Mn = 1.66 × 105[η]0.9. Good mechanical properties of PBTCL‐50 have been shown by tensile stretching experiment that indicates tensile strength, elongation, and Young's modulus are 11.9 MPa, 132%, and 257 MPa, respectively. Polymers with aforementioned properties are suitable for manufacturing biodegradable plastic films for downstream agricultural applications or merely for trash bag. This article reveals that the PBTCL‐50 contains all five monomers with different molar ratios and characteristical linkages between each other. The novel structure was furthermore analyzed by 1H‐ and 13C‐NMR spectroscopy. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

17.
In this work, La0.6Sr0.4CoO3 – δ/Ce1 – xGdxO2 – δ (LSC/GDC) composite cathodes are investigated for SOFC application at intermediate temperatures, especially below 700 °C. The symmetrical cells are prepared by spraying LSC/GDC composite cathodes on a GDC tape, and the lowest polarisation resistance (Rp) of 0.11 Ω cm2 at 700 °C is obtained for the cathode containing 30 wt.‐% GDC. For the application on YSZ electrolyte, symmetrical LSC cathodes are fabricated on a YSZ tape coated on a GDC interlayer. The impact of the sintering temperature on the microstructure and electrochemical properties is investigated. The optimum temperature is determined to be 950 °C; the corresponding Rp of 0.24 Ω cm2 at 600 °C and 0.06 Ω cm2 at 700 °C are achieved, respectively. An YSZ‐based anode‐supported solid oxide fuel cell is fabricated by employing LSC/GDC composite cathode sintered at 950 °C. The cell with an active electrode area of 4 × 4 cm2 exhibits the maximum power density of 0.42 W cm–2 at 650 °C and 0.54 W cm–2 at 700 °C. More than 300 h operating at 650 °C is carried out for an estimate of performance and degradation of a single cell. Despite a decline at the beginning, the stable performance during the later term suggests a potential application.  相似文献   

18.
BACKGROUND: In the development of nonlinear optical (NLO) polymers for electro‐optic device applications, stabilization of electrically induced dipole alignment is one of the important criteria. Polyimides for NLO applications have attracted attention because of their high Tg values and high thermal stability. In this work we designed and synthesized a new type of NLO polyimide, in which the pendant NLO chromophores are parts of the polymer backbone. These mid‐type NLO polymers are expected to have the merits of both main‐chain and side‐chain NLO polymers: stabilization of dipole alignment and good solubility. RESULTS: 3,4‐Bis‐(3,4‐dicarboxyphenylcarboxyethoxy)‐4′‐nitrostilbene dianhydride was prepared and reacted with the corresponding aromatic diamine to yield unprecedented Y‐type polyimides containing 3,4‐dioxynitrostilbenyl groups as NLO chromophores, which constituted parts of the polymer backbones. The resulting polyimides are soluble in polar solvents such as dimethylformamide and dimethylsulfoxide. These polymers showed a thermal stability up to 320 °C in thermogravimetric thermograms with Tg values obtained from differential scanning calorimetry thermograms in the range 143–164 °C. The second harmonic generation (SHG) coefficients (d33) of poled polymer films at the 1064 nm?1 fundamental wavelength were around 9.45 × 10?18 C. CONCLUSION: The dipole alignment exhibited exceptionally high thermal stability even at 30 °C higher than Tg. There was no SHG decay below 180–190 °C because of the partial main‐chain character of the polymer structure, which is acceptable for NLO device applications. Copyright © 2007 Society of Chemical Industry  相似文献   

19.
The energetic material, 3‐nitro‐1,5‐bis(4,4′‐dimethyl azide)‐1,2,3‐triazolyl‐3‐azapentane (NDTAP), was firstly synthesized by means of Click Chemistry using 1,5‐diazido‐3‐nitrazapentane as main material. The structure of NDTAP was confirmed by IR, 1H NMR, and 13C NMR spectroscopy; mass spectrometry, and elemental analysis. The crystal structure of NDTAP was determined by X‐ray diffraction. It belongs to monoclinic system, space group C2/c with crystal parameters a=1.7285(8) nm, b=0.6061(3) nm, c=1.6712(8) nm, β=104.846(8)°, V=1.6924(13) nm3, Z=8, μ=0.109 mm−1, F(000)=752, and Dc=1.422 g cm−3. The thermal behavior and non‐isothermal decomposition kinetics of NDTAP were studied with DSC and TG‐DTG methods. The self‐accelerating decomposition temperature and critical temperature of thermal explosion are 195.5 and 208.2 °C, respectively. NDTAP presents good thermal stability and is insensitive.  相似文献   

20.
A novel copolymer of polybenzimidazoles was prepared by copolymerization of 3,3′‐diaminobenzidine tetrahydrochloride, 3,4‐diaminobenzoic acid and isophthalic acid in polyphosphoric acid at 200 °C. The polymerization could be performed within 90–110 min with the assistance of microwave irradiation. The solubility of the copolymer obtained in N,N‐dimethylacetamide (DMAc) was improved compared with those of poly[2,2′‐(m‐phenylene)‐5,5′‐bibenzimidazole] and poly(2,5‐benzimidazole). Thus copolymer membranes could be readily prepared by dissolving the copolymer powders in DMAc with refluxing under ambient pressure. The decomposition temperature of the copolymer was about 520 °C in air according to thermogravimetric analysis data. The proton conductivity and mechanical strength of the phosphoric acid‐doped copolymer membranes were investigated at elevated temperatures. A conductivity of 0.09 S cm?1 at 180 °C and a tensile stress at break of 5.9 MPa at 120 °C were achieved for the acid‐doped copolymer membranes by doping acids in a 75 wt% H3PO4 solution. Copyright © 2010 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号