首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
New surface coatings that enhance hemocompatibility and biofunctionality of synthetic vascular grafts such as expanded poly(tetrafluoroethylene) (ePTFE) and poly(ethylene terephthalate) (PET) are urgently needed. Lubricant‐infused surfaces prevent nontargeted adhesion and enhance the biocompatibility of blood‐contacting surfaces. However, limited success has been made in incorporating biofunctionality onto these surfaces and generating biofunctional lubricant‐infused coatings that both prevent nonspecific adhesion and enhance targeted binding of biomolecules remains a challenge. Here, a new generation of fluorosilanized lubricant‐infused PET surfaces with built‐in biofunctional nanoprobes is reported. These surfaces are synthesized by starting with a self‐assembled monolayer of fluorosilane that is partially etched using plasma modification technique, thereby creating a hydroxyl‐terminated fluorosilanized PET surface. Simultaneously, silanized nanoprobes are produced by amino‐silanizing anti‐CD34 antibody in solution and directly coupling the anti‐CD34‐aminosilane nanoprobes onto the hydroxyl terminated, fluorosilanized PET surface. The PET surfaces are then lubricated, creating fluorosilanized biofunctional lubricant‐infused PET substrates. Compared with unmodified PET surfaces, the designed biofunctional lubricant‐infused PET surfaces significantly attenuate thrombin generation and blood clot formation and promote targeted binding of endothelial cells from human whole blood.  相似文献   

2.
Nanomaterials have gained considerable attention and interest in the development of novel and high‐resolution contrast agents for medical diagnosis and prognosis in clinic. A classical urea‐based homogeneous precipitation route that combines the merits of in situ thermal decomposition and surface modification is introduced to construct polyethylene glycol molecule (PEG)‐decorated hybrid lutetium oxide nanoparticles (PEG–UCNPs). By utilizing the admirable optical and magnetic properties of the yielded PEG–UCNPs, in vivo up‐conversion luminescence and T1‐enhanced magnetic resonance imaging of small animals are conducted, revealing obvious signals after subcutaneous and intravenous injection, respectively. Due to the strong X‐ray absorption and high atomic number of lanthanide elements, X‐ray computed‐tomography imaging based on PEG–UCNPs is then designed and carried out, achieving excellent imaging outcome in animal experiments. This is the first example of the usage of hybrid lutetium oxide nanoparticles as effective nanoprobes. Furthermore, biodistribution, clearance route, as well as long‐term toxicity are investigated in detail after intravenous injection in a murine model, indicating the overall safety of PEG–UCNPs. Compared with previous lanthanide fluorides, our nanoprobes exhibit more advantages, such as facile construction process and nearly total excretion from the animal body within a month. Taken together, these results promise the use of PEG–UCNPs as a safe and efficient nanoparticulate contrast agent for potential application in multimodal imaging.  相似文献   

3.
Intracellular microRNAs imaging based on upconversion nanoprobes has great potential in cancer diagnostics and treatments. However, the relatively low detection sensitivity limits their application. Herein, a lock‐like DNA (LLD) generated by a hairpin DNA (H1) hybridizing with a bolt DNA (bDNA) sequence is designed, which is used to program upconversion nanoparticles (UCNPs, NaYF4@NaYF4:Yb, Er@NaYF4) and gold nanoparticles (AuNPs). The upconversion emission is quenched through luminescence resonance energy transfer (LRET). The multiple LLD can be repeatedly opened by one copy of target microRNA under the aid of fuel hairpin DNA strands (H2) to trigger disassembly of AuNPs from the UCNP, resulting in the lighting up of UCNPs with a high detection signal gain. This strategy is verified using microRNA‐21 as model. The expression level of microRNA‐21 in various cells lines can be sensitively measured in vitro, meanwhile cancer cells and normal cells can be easily and accurately distinguished by intracellular microRNA‐21 imaging via the nanoprobes. The detection limit is about 1000 times lower than that of the previously reported upconversion nanoprobes without signal amplification. This is the first time a nonenzymatic signal amplification method has been combined with UCNPs for imaging intracellular microRNAs, which has great potential for cancer diagnosis.  相似文献   

4.
Theranostic nanoprobes integrated with diagnostic imaging and therapy capabilities have shown great potential for highly effective tumor therapy by realizing imaging‐guided drug delivery and tumor treatment. Developing novel high‐performance nanoprobes is an important basis for tumor theranostic application. Here, near‐infrared (NIR) fluorescent and low‐biotoxicity Ag2Se quantum dots (QDs) have been coupled with cetuximab, a clinical antiepidermal growth factor receptor antibody drug for tumor therapy, via a facile bioconjugation strategy to prepare multifunctional Ag2Se–cetuximab nanoprobes. Compared with the Ag2Se QDs alone, the Ag2Se–cetuximab nanoprobes display faster and more enrichment at the site of orthotopic tongue cancer, and thus present better NIR fluorescence contrast between the tumor and the surrounding regions. At 24 h postinjection, the NIR fluorescence of Ag2Se–cetuximab nanoprobes at the tumor site is still easily detectable, whereas no fluorescence is observed for the Ag2Se QDs. Moreover, the Ag2Se–cetuximab nanoprobes have also significantly inhibited the tumor growth and improved the survival rate of orthotopic tongue cancer‐bearing nude mice from 0% to 57.1%. Taken together, the constructed multifunctional Ag2Se–cetuximab nanoprobes have achieved combined targeted imaging and therapy of orthotopic tongue cancer, which may greatly contribute to the development of nanotheranostics.  相似文献   

5.
Despite advances in cancer diagnosis and treatment, ovarian cancer remains one of the most fatal cancer types. The development of targeted nanoparticle imaging probes and therapeutics offers promising approaches for early detection and effective treatment of ovarian cancer. In this study, HER‐2 targeted magnetic iron oxide nanoparticles (IONPs) are developed by conjugating a high affinity and small size HER‐2 affibody that is labeled with a unique near infrared dye (NIR‐830) to the nanoparticles. Using a clinically relevant orthotopic human ovarian tumor xenograft model, it is shown that HER‐2 targeted IONPs are selectively delivered into both primary and disseminated ovarian tumors, enabling non‐invasive optical and MR imaging of the tumors as small as 1 mm in the peritoneal cavity. It is determined that HER‐2 targeted delivery of the IONPs is essential for specific and sensitive imaging of the HER‐2 positive tumor since we are unable to detect the imaging signal in the tumors following systemic delivery of non‐targeted IONPs into the mice bearing HER‐2 positive SKOV3 tumors. Furthermore, imaging signals and the IONPs are not detected in HER‐2 low expressing OVCAR3 tumors after systemic delivery of HER‐2 targeted‐IONPs. Since HER‐2 is expressed in a high percentage of ovarian cancers, the HER‐2 targeted dual imaging modality IONPs have potential for the development of novel targeted imaging and therapeutic nanoparticles for ovarian cancer detection, targeted drug delivery, and image‐guided therapy and surgery.  相似文献   

6.
Recently, the development of nano‐theranostic agents aiming at imaging guided therapy has received great attention. In this work, a near‐infrared (NIR) heptamethine indocyanine dye, IR825, in the presence of cationic polymer, polyallylamine hydrochloride (PAH), forms J‐aggregates with red‐shifted and significantly enhanced absorbance. After further complexing with ultra‐small iron oxide nanoparticles (IONPs) and the followed functionalization with polyethylene glycol (PEG), the obtained IR825@PAH‐IONP‐PEG composite nanoparticles are highly stable in different physiological media. With a sharp absorbance peak, IR825@PAH‐IONP‐PEG can serve as an effective photothermal agent under laser irradiation at 915 nm, which appears to be optimal in photothermal therapy application considering its improved tissue penetration compared with 808‐nm light and much lower water heating in comparison to 980‐nm light. As revealed by magnetic resonance (MR) imaging, those nanoparticles after intravenous injection exhibit high tumor accumulation, which is then harnessed for in vivo photothermal ablation of tumors, achieving excellent therapeutic efficacy in a mouse tumor model. This study demonstrates for the first time that J‐aggregates of organic dye molecules are an interesting class of photothermal material, which when combined with other imageable nanoprobes could serve as a theranostic agent for imaging‐guided photothermal therapy of cancer.  相似文献   

7.
A series of novel peptide‐based molecular probes for different biomarkers is highlighted herein. These probes can provide targeted recognition with high affinity, high specificity, high penetration, and rapid excretion ability. These sensitive peptides can achieve rapid and specific detection when they are conjugated with imaging moieties or are formed into nanoprobes, which can be adapted for in vivo molecular imaging in targeted diagnosis and therapy.  相似文献   

8.
Fluorescent nanoprobes are indispensable tools to monitor and analyze biological species and dynamic biochemical processes in cells and living bodies. Conventional nanoprobes have limitations in obtaining imaging signals with high precision and resolution because of the interference with biological autofluorescence, off‐target effects, and lack of spatiotemporal control. As a newly developed paradigm, light‐activated nanoprobes, whose imaging and sensing activity can be remotely regulated with light irradiation, show good potential to overcome these limitations. Herein, recent research progress on the design and construction of light‐activated nanoprobes to improve bioimaging and sensing performance in complex biological systems is introduced. First, recent innovative strategies and their underlying mechanisms for light‐controlled imaging are reviewed, including photoswitchable nanoprobes and phototargeted nanosystems. Subsequently, a short highlight is provided on the development of light‐activatable nanoprobes for biosensing, which offer possibilities for the remote control of biorecognition and sensing activity in a precise manner both temporally and spatially. Finally, perspectives and challenges in light‐activated nanoprobes are commented.  相似文献   

9.
Acute hepatitis is a major problem affecting public health and has attracted more and more attention. Generally, as the standard means, blood tests are taken for evaluating hepatitis. However, such tests fail to accurately reflect the level of hepatitis in vivo. Herein, two highly selective ratiometric fluorescent probes are designed to track peroxynitrite (ONOO?) as the hepatitis indicator, and further evaluate acute liver injury in vivo through dye‐grafted upconversion nanoparticles (UCNPs). Specifically, upconversion luminescence of nanoprobes at 540 or 660 nm can be quenched by the designed and synthesized chromophore E‐CC or H‐CC, that can be destroyed by ONOO? via energy transfer (ET) process, while the upconversion luminescence intensity at 810 nm remains the same. Thus, the developed nanoprobes can be used for ratiometric detection (I540/I660 or I660/I810) of ONOO?. Moreover, the developed near infrared ratiometric nanoprobes can highly selectively detect ONOO?, which can eliminate the interference of HOCl and SO32?. Finally, it is demonstrated that this highly selective ratiometric nanosystem can achieve effective detection of ONOO? in living cells and CCl4‐induced acute liver injury models. It provides some reference value for clinical detection of hepatotoxicity.  相似文献   

10.
Surgical resection is a mainstay in the treatment of malignant brain tumors. Surgeons, however, face great challenges in distinguishing tumor margins due to their infiltrated nature. Here, a pair of gold nanoprobes that enter a brain tumor by crossing the blood–brain barrier is developed. The acidic tumor environment triggers their assembly with the concomitant activation of both magnetic resonance (MR) and surface‐enhanced resonance Raman spectroscopy (SERRS) signals. While the bulky aggregates continuously trap into the tumor interstitium, the intact nanoprobes in normal brain tissue can be transported back into the blood stream in a timely manner. Experimental results show that physiological acidity triggers nanoparticle assembly by forming 3D spherical nanoclusters with remarkable MR and SERRS signal enhancements. The nanoprobes not only preoperatively define orthotopic glioblastoma xenografts by magnetic resonance imaging (MRI) with high sensitivity and durability in vivo, but also intraoperatively guide tumor excision with the assistance of a handheld Raman scanner. Microscopy studies verify the precisely demarcated tumor margin marked by the assembled nanoprobes. Taking advantage of the nanoprobes' rapid excretion rate and the extracellular acidification as a hallmark of solid tumors, these nanoprobes are promising in improving brain‐tumor surgical outcome with high specificity, safety, and universality.  相似文献   

11.
Photoacoustic imaging (PAI) and photoacoustic (PA) therapy have promising applications for treating tumors. It is known that the utilization of high‐absorption‐coefficient probes can selectively enhance the PAI target contrast and PA tumor therapy efficiency in deep‐seated tissue. Here, the design of a probe with the highest availability of optical‐thermo conversion by using graphene oxide (GO) and dyes via π–π stacking interactions is reported. The GO serves as a base material for loading dyes and quenching dye fluorescence via fluorescence resonance energy transfer (FRET), with the one purpose of maximum of PA efficiency. Experiments verify that the designed fluorescence quenching nanoprobes can produce stronger PA signals than the sum of the separate signals generated in the dye and the GO. Potential applications of the fluorescence quenching nanoprobes are demonstrated, dedicating to enhance PA contrast of targets in deep‐seated tissues and tumors in living mice. PA therapy efficiency both in vitro and in vivo by using the fluorescence quenching nanoprobes is found to be higher than with the commonly used PA therapy agents. Taken together, quenching dye fluorescence via FRET will provide a valid means for developing high‐efficiency PA probes. Fluorescence quenching nanoprobes are likely to become a promising candidate for deep‐seated tumor imaging and therapy.  相似文献   

12.
This study introduces multifunctional lipid nanoparticles (LNPs), mimicking the structure and compositions of low‐density lipoproteins, for the tumor‐targeted co‐delivery of anti‐cancer drugs and superparamagnetic nanocrystals. Paclitaxel (4.7 wt%) and iron oxide nanocrystals (6.8 wt%, 11 nm in diameter) are co‐encapsulated within folate‐functionalized LNPs, which contain a cluster of nanocrystals with an overall diameter of about 170 nm and a zeta potential of about ‐40 mV. The folate‐functionalized LNPs enable the targeted detection of MCF‐7, human breast adenocarcinoma expressing folate receptors, in T2‐weighted magnetic resonance images as well as the efficient intracellular delivery of paclitaxel. Paclitaxel‐free LNPs show no significant cytotoxicity up to 0.2 mg mL?1, indicating the excellent biocompatibility of the LNPs for intracellular drug delivery applications. The targeted anti‐tumor activities of the LNPs in a mouse tumor model suggest that the low‐density lipoprotein‐mimetic LNPs can be an effective theranostic platform with excellent biocompatibility for the tumor‐targeted co‐delivery of various anti‐cancer agents.  相似文献   

13.
The assembly of plasmonic metal nanoparticles into hot spot surface‐enhanced Raman scattering (SERS) nanocluster probes is a powerful, yet challenging approach for ultrasensitive biosensing. Scaffolding strategies based on self‐complementary peptides and proteins are of increasing interest for these assemblies, but the electronic and the photonic properties of such hybrid nanoclusters remain difficult to predict and optimize. Here, split‐green fluorescence protein (sGFP) fragments are used as molecular glue and the GFP chromophore is used as a Raman reporter to assemble a variety of gold nanoparticle (AuNP) clusters and explore their plasmonic properties by numerical modeling. It is shown that GFP seeding of plasmonic nanogaps in AuNP/GFP hybrid nanoclusters increases near‐field dipolar couplings between AuNPs and provides SERS enhancement factors above 108. Among the different nanoclusters studied, AuNP/GFP chains allow near‐infrared SERS detection of the GFP chromophore imidazolinone/exocyclic C?C vibrational mode with theoretical enhancement factors of 108–109. For larger AuNP/GFP assemblies, the presence of non‐GFP seeded nanogaps between tightly packed nanoparticles reduces near‐field enhancements at Raman active hot spots, indicating that excessive clustering can decrease SERS amplifications. This study provides rationales to optimize the controlled assembly of hot spot SERS nanoprobes for remote biosensing using Raman reporters that act as molecular glue between plasmonic nanoparticles.  相似文献   

14.
Although multifunctional upconversion imaging probes have recently attracted considerable interest in biomedical research, there are currently few methods for stabilizing these luminescent nanoprobes with oligonucleotides in biological systems. Herein, a method to robustly disperse upconversion nanoprobes in physiological buffers based on rational design and synthesis of nanoconjugates comprising hairpin‐DNA‐modified gold nanoparticles is presented. This approach imparts the upconversion nanoprobes with excellent biocompatibility and circumvents the problem of particle agglomeration. By combining single‐band anti‐Stokes near‐infrared emission and the photothermal effect mediated by the coupling of gold to upconversion nanoparticles, a simple, versatile nanoparticulate system for simultaneous deep‐tissue imaging and drug molecule release in vivo is demonstrated.  相似文献   

15.
Retro‐inverso bradykinin (RI‐BK) has better metabolic stability and higher affinity for the BK type 2 (B2) receptor, compared with bradykinin. At low doses, RI‐BK can selectively enhance the permeability of the blood–brain tumor barrier (BBTB) without harming normal brain tissue. In this study, gold nanoparticles (GNPs) of size ranging from 5 to 90 nm are synthesized to assess the optimal size of nanocarriers that achieves maximum brain accumulation after the treatment of RI‐BK. The ability of the GNPs to cross the BBTB is tested in a rat C6 glioma tumor model. The results of inductively coupled plasma–mass spectrometry and transmission electron microscopy indicate that GNPs with size of 70 nm achieve maximum permeability to the glioma. The present study supports the conclusion that RI‐BK can enhance the permeability of BBTB and provides fundamental information for further development of nanomedicines or nanoprobes for glioma therapy.  相似文献   

16.
Multifunctional nanomaterials with efficient tumor‐targeting and high antitumor activity are highly anticipated in the field of cancer therapy. In this work, a synergetic tumor‐targeted, chemo‐photothermal combined therapeutic nanoplatform based on a dynamically PEGylated, borate‐coordination‐polymer‐coated polydopamine nanoparticle (PDA@CP‐PEG) is developed. PEGylation on the multifunctional nanoparticles is dynamically achieved via the reversible covalent interaction between the surface phenylboronic acid (PBA) group and a catechol‐containing poly(ethylene glycol) (PEG) molecule. Due to the acid‐labile PBA/catechol complex and the weak‐acid‐stable PBA/sialic acid (SA) complex, the nanoparticles can exhibit a synergetic targeting property for the SA‐overexpressed tumor cells, i.e., the PEG‐caused “passive targeting” and PBA‐triggered “active targeting” under the weakly acidic tumor microenvironment. In addition, the photothermal effect of the polydopamine core and the doxorubicin‐loading capacity of the porous coordination polymer layer endow the nanoparticles with the potential for chemo‐photothermal combination therapy. As expected, the in vitro and in vivo studies both verify that the multifunctional nanoparticles possess relatively lower systematic toxicity, efficient tumor targeting ability, and excellent chemo‐photothermal activity for tumor inhibition. It is believed that these multifunctional nanoparticles with synergetic tumor targeting property and combined therapeutic strategies would provide an insight into the design of a high‐efficiency antitumor nanoplatform for potential clinical applications.  相似文献   

17.
The paradigm of using nanoparticle‐based formulations for drug delivery relies on their enhanced passive accumulation in the tumor interstitium. Nanoparticles with active targeting capabilities attempt to further enhance specific delivery of drugs to the tumors via interaction with overexpressed cellular receptors. Consequently, it is widely accepted that drug delivery using actively targeted nanoparticles maximizes the therapeutic benefit and minimizes the off‐target effects. However, the process of nanoparticle mediated active targeting initially relies on their passive accumulation in tumors. In this article, it is demonstrated that these two tumor‐targeted drug delivery mechanisms are interrelated and dosage dependent. It is reported that at lower doses, actively targeted nanoparticles have distinctly higher efficacy in tumor inhibition than their passively targeted counterparts. However, the enhanced permeability and retention effect of the tumor tissue becomes the dominant factor influencing the efficacy of both passively and actively targeted nanoparticles when they are administered at higher doses. Importantly, it is demonstrated that dosage is a pivotal parameter that needs to be taken into account in the assessment of nanoparticle mediated targeted drug delivery.  相似文献   

18.
Once injected into a living organism, cells diffuse or migrate around the initial injection point and become impossible to be visualized and tracked in vivo. The present work concerns the development of a new technique for therapeutic cell labeling and subsequent in vivo visualization and magnetic retention. It is hypothesized and subsequently demonstrated that nanohybrids made of persistent luminescence nanoparticles and ultrasmall superparamagnetic iron oxide nanoparticles incorporated into a silica matrix can be used as an effective nanoplatform to label therapeutic cells in a nontoxic way in order to dynamically track them in real‐time in vitro and in living mice. As a proof‐of‐concept, it is shown that once injected, these labeled cells can be visualized and attracted in vivo using a magnet. This first step suggests that these nanohybrids represent efficient multifunctional nanoprobes for further imaging guided cell therapies development.  相似文献   

19.
A long‐lasting particle‐based fluorescent label is designed for extended cell imaging studies. This onion‐like nanoprobe is constructed through layer‐by‐layer fabrication technology. The nanoprobes are assembled with multiple layers of optically quenched polyelectrolytes, the fluorescence signal of which can be released later by intracellular proteolysis. Upon incubation with cells, the assembled nanoprobes are taken up efficiently. The tight packing and layered assembly of the quenched polyelectrolytes slow subsequent intracellular degradation, and then result in a prolonged intracellular fluorescence signal for up to 3 weeks with no noticeable toxicity.  相似文献   

20.
Irinotecan is one of the main chemotherapeutic agents for colorectal cancer (CRC). MicroRNA‐200 (miR‐200) has been reported to inhibit metastasis in cancer cells. Herein, pH‐sensitive and peptide‐modified liposomes and solid lipid nanoparticles (SLN) are designed for encapsulation of irinotecan and miR‐200, respectively. These peptides include one cell‐penetrating peptide, one ligand targeted to tumor neovasculature undergoing angiogenesis, and one mitochondria‐targeting peptide. The peptide‐modified nanoparticles are further coated with a pH‐sensitive PEG‐lipid derivative with an imine bond. These specially‐designed nanoparticles exhibit pH‐responsive release, internalization, and intracellular distribution in acidic pH of colon cancer HCT116 cells. These nanoparticles display low toxicity to blood and noncancerous intestinal cells. Delivery of miR‐200 by SLN further increases the cytotoxicity of irinotecan‐loaded liposomes against CRC cells by triggering apoptosis and suppressing RAS/β‐catenin/ZEB/multiple drug resistance (MDR) pathways. Using CRC‐bearing mice, the in vivo results further indicate that irinotecan and miR‐200 in pH‐responsive targeting nanoparticles exhibit positive therapeutic outcomes by inhibiting colorectal tumor growth and reducing systemic toxicity. Overall, successful delivery of miR and chemotherapy by multifunctional nanoparticles may modulate β‐catenin/MDR/apoptosis/metastasis signaling pathways and induce programmed cancer cell death. Thus, these pH‐responsive targeting nanoparticles may provide a potential regimen for effective treatment of colorectal cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号