首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We explore a strongly interacting QDs/Ag plasmonic coupling structure that enables multiple approaches to manipulate light emission from QDs. Group II–VI semiconductor QDs with unique surface states (SSs) impressively modify the plasmonic character of the contiguous Ag nanostructures whereby the localized plasmons (LPs) in the Ag nanostructures can effectively extract the non‐radiative SSs of the QDs to radiatively emit via SS–LP resonance. The SS–LP coupling is demonstrated to be readily tunable through surface‐state engineering both during QD synthesis and in the post‐synthesis stage. The combination of surface‐state engineering and band‐tailoring engineering allows us to precisely control the luminescence color of the QDs and enables the realization of white‐light emission with single‐size QDs. Being a versatile metal, the Ag in our optical device functions in multiple ways: as a support for the LPs, for optical reflection, and for electrical conduction. Two application examples of the QDs/Ag plasmon coupler for optical devices are given, an Ag microcavity + plasmon‐coupling structure and a new QD light‐emitting diode. The new QDs/Ag plasmon coupler opens exciting possibilities in developing novel light sources and biomarker detectors.  相似文献   

2.
Great opportunities emerge not only in the generation of anisotropic plasmonic nanostructures but also in controlling their orientation relative to incident light. Herein, a stepwise seeded growth method is reported for the synthesis of rod‐shaped plasmon nanostructures which are vertically self‐aligned with respect to the surface of colloidal substrates. Anisotropic growth of metal nanostructure is achieved by depositing metal seeds onto the surface of colloidal substrates and then selectively passivating the seed surface to induce symmetry breaking in the subsequent seed‐mediated growth process. The versatility of this method is demonstrated by producing nanoparticle dimers and linear trimers of Au, Au–Ag, Au–Pd, and Au–Cu2O. Further, this unique method enables the automatic vertical alignment of the resulting plasmonic nanostructures to the surface of the colloidal substrate, thereby making it possible to design magnetic/plasmonic nanocomposites that allow the dynamic tuning of the plasmon excitation by controlling their orientation using an external magnetic field. The controlled anisotropic growth of colloidal plasmonic nanostructures and their dynamic modulation of plasmon excitation further allow them to be conveniently fixed in a thin polymer film with a well‐controlled orientation to display polarization‐dependent patterns that may find important applications in information encryption.  相似文献   

3.
Surface plasmon resonance (SPR)‐mediated photocatalysis without the bandgap limitations of traditional semiconductor has aroused significant attention in solar‐to‐chemical energy conversion. However, the photocatalytic efficiency barely initiated by the SPR effects is still challenged by the low concentration and ineffective extraction of energetic hot electrons, slow charge migration rates, random charge diffusion directions, and the lack of highly active sites for redox reactions. Here, the tunable, progressive harvesting of visible‐to‐near infrared light (vis–NIR, λ > 570 nm) by designing plasmonic Au nanorods and metal (Au, Ag, or Pt) nanoparticle codecorated 1D CdS nanowire (1D CdS NW) ensemble is reported. The intimate integration of these metal nanostructures with 1D CdS NWs promotes the extraction and manipulated directional separation and migration of hot charge carriers in a more effective manner. Such cooperative synergy with tunable control of interfacial interaction, morphology optimization, and cocatalyst strategy results in the distinctly boosted performance for vis–NIR‐driven plasmonic photocatalysis. This work highlights the significance of rationally progressive design of plasmonic metal–semiconductor‐based composite system for boosting the regulated directional flow of hot charge carrier and thus the more efficient use of broad‐spectrum solar energy conversion.  相似文献   

4.
The optical Kerr nonlinearity of plasmonic metals provides enticing prospects for developing reconfigurable and ultracompact all‐optical modulators. In nanostructured metals, the coherent coupling of light energy to plasmon resonances creates a nonequilibrium electron distribution at an elevated electron temperature that gives rise to significant Kerr optical nonlinearities. Although enhanced nonlinear responses of metals facilitate the realization of efficient modulation devices, the intrinsically slow relaxation dynamics of the photoexcited carriers, primarily governed by electron–phonon interactions, impedes ultrafast all‐optical modulation. Here, femtosecond (≈190 fs) all‐optical modulation in plasmonic systems via the activation of relaxation pathways for hot electrons at the interface of metals and electron acceptor materials, following an on‐resonance excitation of subradiant lattice plasmon modes, is demonstrated. Both the relaxation kinetics and the optical nonlinearity can be actively tuned by leveraging the spectral response of the plasmonic design in the linear regime. The findings offer an opportunity to exploit hot‐electron‐induced nonlinearities for design of self‐contained, ultrafast, and low‐power all‐optical modulators based on plasmonic platforms.  相似文献   

5.
Light-driven proton-coupled electron transfer (PCET) reactions on nanoplasmonics would bring temporal control of their reactive pathways, in particular, prolong their charge separation state. Using a silver nano-hybrid plasmonic structure, we observed that optical excitation of Ag-localized surface plasmon instigated electron injection into TiO2 conduction band and oxidation of isopropanol alcoholic functionality. Femtosecond transient infrared absorption studies show that electron transfer from Ag to TiO2 occurs in ca. 650?fs, while IPA molecules near the Ag surface undergo an ultrafast bidirectional PCET step within 400?fs. Our work demonstrates that ultrafast PCET reaction plays a determinant role in prolonging charge separation state, providing an innovative strategy for visible-light photocatalysis with plasmonic nanostructures.  相似文献   

6.
Direct photoexcitation of charges at a plasmonic metal hotspot produces energetic carriers that are capable of performing photocatalysis in the visible spectrum. However, the mechanisms of generation and transport of hot carriers are still not fully understood and under intense investigation because of their potential technological importance. Here, spectroscopic evidence proves that the reduction of dye molecules tethered to a Au(111) surface can be triggered by plasmonic carriers via a tunneling mechanism, which results in anomalous Raman intensity fluctuations. Tip‐enhanced Raman spectroscopy (TERS) helps to correlate Raman intensity fluctuations with temperature and with properties of the molecular spacer. In combination with electrochemical surface‐enhanced Raman spectroscopy, TERS results show that plasmon‐induced energetic carriers can directly tunnel to the dye through the spacer. This organic spacer chemically isolates the adsorbate from the metal but does not block photo‐induced redox reactions, which offers new possibilities for optimizing plasmon‐induced photocatalytic systems.  相似文献   

7.
Ultrabroad‐spectrum absorption and highly efficient generation of available charge carriers are two essential requirements for promising semiconductor‐based photocatalysts, towards achieving the ultimate goal of solar‐to‐fuel conversion. Here, a fascinating nonmetal plasmonic Z‐scheme photocatalyst with the W18O49/g‐C3N4 heterostructure is reported, which can effectively harvest photon energies spanning from the UV to the nearinfrared region and simultaneously possesses improved charge‐carrier dynamics to boost the generation of long‐lived active electrons for the photocatalytic reduction of protons into H2. By combining with theoretical simulations, a unique synergistic photocatalysis effect between the semiconductive Z‐scheme charge‐carrier separation and metal‐like localized‐surface‐plasmon‐resonance‐induced “hot electrons” injection process is demonstrated within this binary heterostructure.  相似文献   

8.
Future generations of photoelectrodes for solar fuel generation must employ inexpensive, earth-abundant absorber materials in order to provide a large-scale source of clean energy. These materials tend to have poor electrical transport properties and exhibit carrier diffusion lengths which are significantly shorter than the absorption depth of light. As a result, many photoexcited carriers are generated too far from a reactive surface and recombine instead of participating in solar-to-fuel conversion. We demonstrate that plasmonic resonances in metallic nanostructures and multilayer interference effects can be engineered to strongly concentrate sunlight close to the electrode/liquid interface, precisely where the relevant reactions take place. On comparison of spectral features in the enhanced photocurrent spectra to full-field electromagnetic simulations, the contribution of surface plasmon excitations is verified. These results open the door to the optimization of a wide variety of photochemical processes by leveraging the rapid advances in the field of plasmonics.  相似文献   

9.
Current photocatalytic semiconductors often have low catalytic performance due to limited light utilization and fast charge carrier recombination. Formation of Schottky junction between semiconductors and plasmonic metals can broaden the light absorption and facilitate the photon‐generated carriers separation. To further amplify the catalytic performance, herein, an asymmetric gold‐zinc oxide (Asy‐Au?ZnO) nanorod array is rationally designed, which realizes the synergy of piezocatalysis and photocatalysis, as well as spatially oriented electron?hole pairs separation, generating a significantly enhanced catalytic performance. In addition to conventional properties from noble metal/semiconductor Schottky junction, the rationally designed heterostructure has several additional advantages: 1) The piezoelectric ZnO under light and mechanical stress can directly generate charge carriers; 2) the Schottky barrier can be reduced by ZnO piezopotential to enhance the injection efficiency of hot electrons from Au nanoparticles to ZnO; 3) the unique asymmetric nanorod array structure can achieve a spatially directed separation and migration of the photon‐generated carriers. When ultrasound and all‐spectrum light irradiation are exerted simultaneously, the Asy‐Au?ZnO reaches the highest catalytic efficiency of 95% in 75 min for dye degradation. It paves a new pathway for designing unique asymmetric nanostructures with the synergy of photocatalysis and piezocatalysis.  相似文献   

10.
Photo‐electrochemical water splitting is a very promising and environmentally friendly route for the conversion of solar energy into hydrogen. However, the solar‐to‐H2 conversion efficiency is still very low due to rapid bulk recombination of charge carriers. Here, a photonic nano‐architecture is developed to improve charge carrier generation and separation by manipulating and confining light absorption in a visible‐light‐active photoanode constructed from BiVO4 photonic crystal and plasmonic nanostructures. Synergistic effects of photonic crystal stop bands and plasmonic absorption are observed to operate in this photonic nanostructure. Within the scaffold of an inverse opal photonic crystal, the surface plasmon resonance is significantly enhanced by the photonic Bragg resonance. Nanophotonic photoanodes show AM 1.5 photocurrent densities of 3.1 ± 0.1 mA cm?2 at 1.23 V versus RHE, which is among the highest for oxide‐based photoanodes and over 4 times higher than the unstructured planar photoanode.  相似文献   

11.
The plasmon‐optical effects have been utilized to optically enhance active layer absorption in organic solar cells (OSCs). The exploited plasmonic resonances of metal nanomaterials are typically from the fundamental dipole/high‐order modes with narrow spectral widths for regional OSC absorption improvement. The conventional broadband absorption enhancement (using plasmonic effects) needs linear‐superposition of plasmonic resonances. In this work, through strategic incorporation of gold nanostars (Au NSs) in between hole transport layer (HTL) and active layer, the excited plasmonic asymmetric modes offer a new approach toward broadband enhancement. Remarkably, the improvement is explained by energy transfer of plasmonic asymmetric modes of Au NS. In more detail, after incorporation of Au NSs, the optical power in electron transport layer transfers to active layer for improving OSC absorption, which otherwise will become dissipation or leakage as the role of carrier transport layer is not for photon‐absorption induced carrier generation. Moreover, Au NSs simultaneously deliver plasmon‐electrical effects which shorten transport path length of the typically low‐mobility holes and lengthen that of high‐mobility electrons for better balanced carrier collection. Meanwhile, the resistance of HTL is reduced by Au NSs. Consequently, power conversion efficiency of 10.5% has been achieved through cooperatively plasmon‐optical and plasmon‐electrical effects of Au NSs.  相似文献   

12.
A hierarchically patterned metal/semiconductor (gold nanoparticles/ZnO nanowires) nanostructure with maximized photon trapping effects is fabricated via interference lithography (IL) for plasmon enhanced photo‐electrochemical water splitting in the visible region of light. Compared with unpatterned (plain) gold nanoparticles‐coated ZnO NWs (Au NPs/ZnO NWs), the hierarchically patterned Au NPs/ZnO NWs hybrid structures demonstrate higher and wider absorption bands of light leading to increased surface enhanced Raman scattering due to the light trapping effects achieved by the combination of two different nanostructure dimensions; furthermore, pronounced plasmonic enhancement of water splitting is verified in the hierarchically patterned Au NPs/ZnO NWs structures in the visible region. The excellent performance of the hierarchically patterned Au NPs/ZnO NWs indicates that the combination of pre‐determined two different dimensions has great potential for application in solar energy conversion, light emitting diodes, as well as SERS substrates and photoelectrodes for water splitting.  相似文献   

13.
The ultrafast transfer of plasmon‐induced hot electrons is considered an effective kinetics process to enhance the photoconversion efficiencies of semiconductors through strong localized surface plasmon resonance (LSPR) of plasmonic nanostructures. Although this classical sensitization approach is widely used in noble‐metal–semiconductor systems, it remains unclear in nonmetallic plasmonic heterostructures. Here, by combining ultrafast transient absorption spectroscopy with theoretical simulations, IR‐driven transfer of plasmon‐induced hot electron in a nonmetallic branched heterostructure is demonstrated, which is fabricated through solvothermal growth of plasmonic W18O49 nanowires (as branches) onto TiO2 electrospun nanofibers (as backbones). The ultrafast transfer of hot electron from the W18O49 branches to the TiO2 backbones occurs within a timeframe on the order of 200 fs with very large rate constants ranging from 3.8 × 1012 to 5.5 × 1012 s?1. Upon LSPR excitation by low‐energy IR photons, the W18O49/TiO2 branched heterostructure exhibits obviously enhanced catalytic H2 generation from ammonia borane compared with that of W18O49 nanowires. Further investigations by finely controlling experimental conditions unambiguously confirm that this plasmon‐enhanced catalytic activity arises from the transfer of hot electron rather than from the photothermal effect.  相似文献   

14.
The mode hybridization between adjacent graphene nanoribbons determines the integration density of graphene‐based plasmonic devices. Here, plasmon hybridization in graphene nanostructures is demonstrated through the characterization of the coupling strength of plasmons in graphene nanoribbons as a function of charge density and inter‐ribbon spacing using Fourier transform infrared microscopy. In combination with numerical simulations, it is shown that the plasmon coupling is strongly mediated by the substrate phonons. For polar substrates, the plasmon coupling strength is limited by the plasmon–phonon interactions. In contrast, a nonpolar substrate affects neither the energy distribution of the original plasmon modes in graphene nanostructures nor their plasmon interactions, which increases exponentially as the inter‐ribbon spacing decreases. To further explore the potential of graphene broadband plasmonics on nonpolar substrates, a scheme is proposed that uses a metal–dielectric heterostructure to prevent the overlap of plasmons between neighboring graphene nanoribbons. The device structures retain the plasmon resonance frequency of the graphene ribbons and maximally isolate the plasmonic components from the surrounding electromagnetic environment, allowing modular design in integrated plasmonic circuits.  相似文献   

15.
A major challenge in plasmonic hot spot fabrication is to efficiently increase the hot spot volumes on single metal nanoparticles to generate stronger signals in plasmon‐enhanced applications. Here, the synthesis of designer nanoparticles, where plasmonic‐active Au nanodots are selectively deposited onto the edge/tip hot spot regions of Ag nanoparticles, is demonstrated using a two‐step seed‐mediated precision synthesis approach. Such a “hot spots over hot spots” strategy leads to an efficient enhancement of the plasmonic hot spot volumes on single Ag nanoparticles. Through cathodoluminescence hyperspectral imaging of these selective edge gold‐deposited Ag octahedron (SEGSO), the increase in the areas and emission intensities of hot spots on Ag octahedra are directly visualized after Au deposition. Single‐particle surface‐enhanced Raman scattering (SERS) measurements demonstrate 10‐fold and 3‐fold larger SERS enhancement factors of the SEGSO as compared to pure Ag octahedra and non‐selective gold‐deposited Ag octahedra (NSEGSO), respectively. The experimental results corroborate well with theoretical simulations, where the local electromagnetic field enhancement of our SEGSO particles is 15‐fold and 1.3‐fold stronger than pure Ag octahedra and facet‐deposited particles, respectively. The growth mechanisms of such designer nanoparticles are also discussed together with a demonstration of the versatility of this synthetic protocol.  相似文献   

16.
Though plasmonic effect is making some headway in the energy harvesting realm, its fundamental charge transfer mechanism to a large extent is attributed to the hot‐carrier generation at the contact interface. Herein this work attempts to elucidate the physical origin of light induced plasmo‐pyroelectric enhancement based on charge density manipulation on surface state in the vicinity of the metal–ferroelectric contact interface. More importantly, by tuning the band bending, it is shown that the charge density on the surface state of a hybrid plasmo‐pyroelectric (BaTiO3‐Ag) nanosystem can be manipulated and largely increased under the resonant blue light illumination (363 nm). It is also demonstrated that owing to this effect, the spatial pyroelectric activity of a hybrid plasmo‐pyroelectric nanosystem governs 46% enhancement in pyroelectric coefficient. This research highlights the optically regulated charge density in plasmo‐pyroelectric nanosystems, which could pave a new avenue for energy harvesting/conversion devices with distinguished advantages in wireless, photonic‐controlled, localized, and dynamic stimulation.  相似文献   

17.
Pairs of immiscible elements with deep eutectics are used to synthesize periodic arrays of heterodimers and hollowed metal nanocrescents. In the devised route, substrate‐immobilized Au or Ag nanostructures act as heterogeneous nucleation sites for Ge adatoms. At elevated temperatures the adatoms collect in sufficient quantities to transform each site into a AuGe liquid alloy which, upon cooling, phase separates into elemental components sharing a common interface. The so‐formed Au‐Ge and Ag‐Ge heterodimers exhibit a complex morphology characterized by a noble metal nanocrescent which partially encapsulates one end of the Ge domain. Through the use of a selective etch the Ge component is removed, leaving behind a periodic array of hollow noble metal nanocrescents on the surface of the substrate. Optical characterization of both the heterodimers and nanocrescents indicates that the presence of Ge gives rise to a relative blue‐shift in the localized surface plasmon peak, a result that is in stark contrast to the red‐shifts typically observed when plasmonic nanostructures are in contact with a dielectric medium. Simulations are used to both rationalize the observed shift and show the potential for deriving unexpected behaviors when semishell‐like noble metal structures are in contact with high permittivity dielectric mediums.  相似文献   

18.
Wei Y  Ke L  Kong J  Liu H  Jiao Z  Lu X  Du H  Sun XW 《Nanotechnology》2012,23(23):235401
Zinc oxide (ZnO) nanorods coated with silver (Ag) film on a polyethylene terephthalate (PET)flexible substrate were used as the photo anode for water splitting. The hybrid nanostructures were prepared via low-temperature hydrothermal growth and electron beam evaporation. The effects of plasmonic enhanced absorption, surface recombination inhibition and improved charge transport are investigated by varying the Ag thickness. Light trapping and absorption enhancement are further studied by optimizing the curvature of the PET substrates. The maximum short circuit current density (JSC, 0.616 mA cm -2) and the photoelectron conversion efficiency (PCE, 0.81%) are achieved with an optimized Ag film thickness of 10 nm and substrate bending radius of 6.0 mm. The maximum JSC and PCE are seven times and ten times, respectively, higher than those of the bare ZnO nanorods on flexible substrates without bending. The overall PEC performance improvement is attributed to the plasmonic effects induced by Ag film and improved charge transport due to inhibition of ZnO surface charge recombination. Enhanced light trapping (harvesting) induced by bending the PET substrates further improved the overall efficiency.  相似文献   

19.
J Lee  S Mubeen  X Ji  GD Stucky  M Moskovits 《Nano letters》2012,12(9):5014-5019
We report a plasmonic water splitting cell in which 95% of the effective charge carriers derive from surface plasmon decay to hot electrons, as evidenced by fuel production efficiencies up to 20-fold higher at visible, as compared to UV, wavelengths. The cell functions by illuminating a dense array of aligned gold nanorods capped with TiO(2), forming a Schottky metal/semiconductor interface which collects and conducts the hot electrons to an unilluminated platinum counter-electrode where hydrogen gas evolves. The resultant positive charges in the Au nanorods function as holes and are extracted by an oxidation catalyst which electrocatalytically oxidizes water to oxygen gas.  相似文献   

20.
In recent years, optical chirality of plasmonic nanostructures has aroused great interest because of innovative fundamental understanding as well as promising potential applications in optics, catalysis and sensing. Herein, state‐of‐the‐art studies on circular dichroism (CD) characteristics of plasmonic nanostructures are summarized. The hybrid of achiral plasmonic nanoparticles (NPs) and chiral molecules is explored to generate a new CD response at the plasmon resonance as well as the enhanced CD intensity of chiral molecules in the UV region, owing to the Coulomb static and dynamic dipole interactions between plasmonic NPs and chiral molecules. As for chiral assembly of plasmonic NPs, plasmon–plasmon interactions between the building blocks are found to induce generation of intense CD response at the plasmon resonance. Three‐dimensional periodical arrangement of plasmonic NPs into macroscale chiral metamaterials is further introduced from the perspective of negative refraction and photonic bandgap. A strong CD signal is also discerned in achiral planar plasmonic nanostructures under illumination of circular polarized plane wave at oblique incidence or input vortex beam at normal incidence. Finally perspectives, especially on future investigation of time‐resolved CD responses, are presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号