首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Electrospinning processing can be applied to fabricate fibrous polymer mats composed of fibers whose diameters range from several microns down to 100 nm or less. In this article, we describe how electrospinning was used to produce zein nanofiber mats and combined with crosslinking to improve the mechanical properties of the as‐spun mats. Aqueous ethanol solutions of zein were electrospun, and nanoparticles, nanofiber mats, or ribbonlike nanofiber mats were obtained. The effects of the electrospinning solvent and zein concentration on the morphology of the as‐spun nanofiber mats were investigated by scanning electron microscopy. The results showed that the morphologies of the electrospun products exhibited a zein‐dependent concentration. Optimizing conditions for zein produced nanofibers with a diameter of about 500 nm with fewer beads or ribbonlike nanofibers with a diameter of approximately 1–6 μm. Zein nanofiber mats were crosslinked by hexamethylene diisocyanate (HDI). The tensile strength of the crosslinked electrospun zein nanofiber mats was increased significantly. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103:380–385, 2007  相似文献   

2.
Conductive nanofibers of poly(vinylidene fluoride) (PVDF) filled with polyaniline (PANi)‐coated multi‐wall carbon nanotubes (MWCNTs) were fabricated using the electrospinning technique. PANi is an intrinsically conductive polymer. The addition of PANi‐coated MWCNTs to PVDF created short conductive strands on the surface of the nanofibers, facilitating the formation of a conductive network in the transverse direction of the nanofibers. Piezoelectricity along with electric conductivity makes these PVDF nanofibers promising for applications such as sensors and actuators. Electrospun PVDF nanofiber mats had higher piezoelectricity than melt‐processed samples produced using traditional polymer processing techniques, such as compression molding. Spectroscopic imaging techniques were employed to study the effects of the filler and processing conditions on the nanofiber structure. X‐ray diffraction, Fourier transform infrared spectroscopy and differential scanning calorimetry results indicated a large increase in the β‐phase crystals of the PVDF nanofibers. This higher content of β‐phase crystals enhanced the piezoelectricity of the nanofibers. © 2015 Society of Chemical Industry  相似文献   

3.
The temperature‐dependent transition of the crystal phases of poly(vinylidene fluoride‐co‐hexafluoropropylene) (PVDF‐HFP) was investigated in the electrospinning process. A solution of PVDF‐HFP in N,N‐dimethyl acetamide (DMAc) produced only the β‐phase‐dominant crystal up to 70 °C, irrespective of the spinneret temperature. In a mixed solvent of DMAc and acetone, however, the crystal phase of the electrospun fibers was dependent on temperature: β‐phase‐dominant at 30 and 50 °C and α‐phase‐dominant at 70 °C. The transition was related to a change of the coagulation rate during electrospinning, because the less perfect α phase is preferable to the β phase at a higher coagulation rate. The temperature‐dependent increase of the coagulation rate was more drastic in the presence of acetone, so the transition took place only in the mixed solvent. At elevated temperature, acetone not only raised the evaporation rate of the solvent but promoted the phase separation of the polymer resulting from the lower critical solution temperature behavior, which was rheologically traced. © 2019 Society of Chemical Industry  相似文献   

4.
Nonwoven nanofiber mats of polyvinylidene fluoride (PVDF) with modified layered double hydroxide (MLDH) were prepared by electrospinning. The fiber morphology was studied using scanning electron microscopy. X‐ray diffraction and FTIR spectroscopy was used to characterize the polymorphism in electrospun mats. Fibers of diameter in the range 80–800 nm with beads of about 2–3 µm size were observed for pure PVDF, while in case of PVDF/MLDH nanocomposites the number and size of beads were found to be significantly reduced. Uniform and fine nanofibers were obtained at lower content of MLDH, but slightly rough surface was seen for higher content. FTIR and X‐ray diffraction patterns signify various crystalline forms of electrospun PVDF. The content of polar β‐crystalline phase of PVDF, which exhibit piezo and ferroelectric properties was found to be enhanced significantly due to reinforcement of MLDH. Use of these nanofiber mats for heavy metal Cu (II) removal was explored. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 4508–4515, 2013  相似文献   

5.
Lei Yu 《Polymer》2009,50(9):2133-756
We investigated for the first time the morphology and crystal polymorphism of electrospun composite nanofibers of poly(vinylidene fluoride) (PVDF) with two nanoclays: Lucentite™ STN and SWN. Both nanoclays are based on the hectorite structure, but STN has organic modifier in between the layers of hectorite while SWN does not. PVDF/nanoclay was dissolved in N,N-dimethylformamide/acetone and electrospun into composite nanofiber mats with fiber diameters ranging from 50-800 nm. Scanning electron microscopy shows that addition of STN and SWN can greatly decrease the number of beads and make the diameter of the nanofibers more uniform due to the increase of electrospinning solution conductivity brought by the nanoclay. Infrared spectroscopy and X-ray diffraction confirm that both STN and SWN can induce more extended PVDF chain conformers, found in beta and gamma phase, while reducing the alpha phase conformers in electrospun PVDF/Nanoclay composite nanofibers. With the attached organic modifier, even a small amount of STN can totally eliminate the non-polar alpha crystal conformers while SWN cannot. The ionic organic modifier makes STN much more effective than SWN in causing crystallization of the polar beta and gamma phases of PVDF. An ion-dipole interaction mechanism, suggested by Ramasundaram, et al. is utilized to explain the crystal polymorphism behavior in electrospun PVDF/nanoclay composite nanofibers.  相似文献   

6.
β相聚偏氟乙烯(PVDF)因其具有良好的压电、热电性能而受到广泛的关注。采用静电纺丝的方法一步得到高β相含量的PVDF纤维膜,利用X射线衍射(XRD)谱图以及后续的处理分析静电纺过程中的纺丝参数对制备的PVDF纤维膜的结晶度以及结晶部分中β相含量的影响,从而得到了制备高β相含量PVDF的最优化的静电纺丝条件。  相似文献   

7.
The poor mechanical properties of electrospun materials remain one of the major hindrances toward their practical application. In this study, we report the synthesis of core‐sheath nanofibrous mats to enhance the mechanical properties of an antimicrobial polymer nanofiber for application in filter media. This objective was achieved via coaxial electrospinning of poly[styrene‐coN‐(N′,N′‐dimethyl‐3‐aminopropyl)maleimide] as the sheath which is an antimicrobial polymer and nylon 6 polymer for the core which is well reported for exceptional mechanical properties. Extensive characterization of these fibers was performed using scanning electron microscopy, scanning transmission electron microscopy, confocal fluorescence microscopy as well as attenuated total reflectance Fourier transform spectroscopy to provide evidence of the core‐sheath morphology. Antimicrobial evaluation was also carried out on the fabricated fibers via the live/dead fluorescence technique. This was done to determine if the poly[styrene‐coN‐(N′,N′‐dimethyl‐3‐aminopropyl)maleimide] retained its antimicrobial activity. The fibers were found to be effective against the Gram‐positive Staphylococcus aureus (ATCC25925) and Gram‐negative Pseudomonas aeruginosa (ATCC27853). Subsequent tensile testing and filtration experiments provided evidence that the incorporation of the nylon core improved mechanical properties of the nanofiber mats. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46303.  相似文献   

8.
Recently, piezoelectric nanogenerators have received great interest as they can convert waste mechanical and radiative energy to electricity and can be used in self-energy generating systems and sensor technologies. In this study, electrospun poly(vinylidene fluoride) (PVDF) nanofiber-based piezoelectric nanogenerators with reduced graphene oxide (rGO), polyaniline (PANI), and PANI-functionalized rGO (rGOPANI) have been developed. Two different types of nanofiber mats were produced: First, rGO- and rGOPANI-doped PVDF nanofiber mats and second, rGO, PANI and rGOPANI-spray-coated PVDF nanofiber mats that have worked as nanogenerators' electrodes. Then, characterizations of samples were performed in terms of piezoelectricity, Fourier transform infrared (FTIR) spectrophotometric, X-ray diffractions (XRD), and scanning electron microscopy analyses. FTIR and XRD results confirmed that piezoelectric β-crystalline phase of PVDF occurred after the electrospinning process. Besides, maximum output voltages were obtained as 7.84 and 10.60 V for rGO-doped PVDF and rGOPANI-coated PVDF nanofiber mats, respectively. As a result, the doped nanofibers were found to be more successful due to the higher device accuracy in sensor technologies compared with spray-coated samples. However, spray-coating method proved to be more suitable technique for the production of nanogenerators on an industrial scale in terms of fast and large-scale applicability. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48517.  相似文献   

9.
Generally, polymer solution or sol–gel is used to produce electrospun nanofibers via the electrospinning technique. In the utilized sol–gel, the metallic precursor should be soluble in a proper solvent since it has to hydrolyze and polycondensate in the final solution; this strategy straitens the applications of the electrospinning process and limits the category of the electrospinnable materials. In this study, we are discussing electrospinning of a colloidal solution process as an alternative strategy. We have utilized many solid nanopowders and different polymers as well. All the examined colloids have been successfully electrospun. According to the SEM and FE SEM analyses for the obtained nanofiber mats, the polymeric nanofibers could imprison the small nanoparticles; however, the big size ones were observed attaching the nanofiber mats. Successfully, the proposed strategy could be exploited to prepare polymeric nanofibers incorporating metal nanoparticles which might have interesting properties compared with the pristine. For instance, PCL/Ti nanofiber mats exhibited good bioactivity compared with pristine PCL. The proposed strategy can be considered as an innovated methodology to prepare a new class of the electrospun nanofiber mats which cannot be obtained by the conventional electrospinning technique.  相似文献   

10.
The polymorphism and crystallinity of poly(vinylidene fluoride) (PVDF) membranes, made from electrospinning of the PVDF in pure N,N‐dimethylformamide (DMF) and DMF/acetone mixture solutions are studied. Influence of the processing and solution parameters such as flow rate, applied voltage, solvent system, and mixture ratio, on nanofiber morphology, total crystallinity, and crystal phase content of the nanofibers are investigated using scanning electron microscopy, wide‐angle X‐ray scattering, differential scanning calorimetric, and Fourier transform infrared spectroscopy. The results show that solutions of 20% w/w PVDF in two solvent systems of DMF and DMF/acetone (with volume ratios of 3/1 and 1/1) are electrospinnable; however, using DMF/acetone volume ratio of 1/3 led to blockage of the needle and spinning process was stopped. Very high fraction of β‐phase (~79%–85%) was obtained for investigated nanofiber, while degree of crystallinity increased to 59% which is quite high due to the strong influence of electrospinning on ordering the microstructure. Interestingly, ultrafine fibers with the diameter of 12 and 15 nm were obtained in this work. Uniform and bead free nanofiber was formed when a certain amount of acetone was added in to the electrospinning solution. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42304.  相似文献   

11.
Poly(vinylidene fluoride) (PVDF) nanofibers were fabricated via electrospinning with an investigation of various ratios of binary solvents at different temperatures. The amount of acetone influenced the morphology. Scanning electron microscopy showed a PVDF membrane composed of smooth and unblemished fibers without beads and dark spots with small diameters of 201 ± 54 nm at a dimethylformamide‐to‐acetone ratio of 4:6. The temperature of pre‐thermal treatment from room temperature to 120 °C was investigated to promote the β crystalline phase in electrospun PVDF nanofibers. The result was characterized using Fourier transform infrared (FTIR) spectroscopy and X‐ray diffraction (XRD). PVDF solution prepared at 80 °C was used to increase the β crystalline phase of the electrospun PVDF nanofibers due to the transformation of α to β phase occurring during the spinning process and also bead‐free PVDF nanofibers were obtained. Differential scanning calorimetry revealed crystallization behavior corresponding with that determined using FTIR spectroscopy and XRD. Therefore, the solvent proportion and pretreatment temperature were observed to affect ultrafine nanofiber and crystalline structure of PVDF, respectively. © 2020 Society of Chemical Industry  相似文献   

12.
Newly proposed polymer electrolyte membranes (PEMs) composed of an electrospun poly(vinylidene fluoride) (PVDF) fibrous mat embedded in a poly(4‐vinylpyridine) (P4VP) matrix were successfully fabricated in order to improve the mechanical and dimensional stabilities and ionic conductivity of membranes in lithium rechargeable batteries. Fourier transform infrared spectroscopic analysis showed that as a result of the use of a high voltage during electrospinning the crystalline structure of PVDF changed partially from α‐phase to β‐phase. Energy‐dispersive X‐ray spectroscopy confirmed the existence of crosslinked P4VP in the PVDF fibrous mat. The electrolyte uptakes of PVDF and PVDF/P4VP composite mats were higher than that of PVDF cast film. The tensile properties of PVDF/P4VP composite mat were considerably improved compared to those of the pristine PVDF fibrous mat under both dry and wet (soaked with electrolyte) conditions. In addition, the mechanical and dimensional stabilities of the PVDF/P4VP composite PEM were further enhanced due to crosslinking between the P4VP chains. Furthermore, the PVDF/P4VP composite PEM exhibited an ionic conductivity that was an order of magnitude higher than that of traditional PVDF film. © 2012 Society of Chemical Industry  相似文献   

13.
Nanofibers of n‐Butyl Acrylate/Methyl Methacrylate copolymer [P(BA‐co‐MMA)] were produced by electrospinning in this study. P(BA‐co‐MMA) was synthesized by emulsion polymerization. The structural and thermal properties of copolymers and electrospun P(BA‐co‐MMA) nanofibers were analyzed using Fourier transform infrared spectroscopy–Attenuated total reflectance (FTIR–ATR), Nuclear magnetic spectroscopy (NMR), and Differential scanning calorimetry (DSC). FTIR–ATR spectra and NMR spectrum revealed that BA and MMA had effectively participated in polymerization. The morphology of the resulting nanofibers was investigated by scanning electron microscopy, indicating that the diameters of P(BA‐co‐MMA) nanofibers were strongly dependent on the polymer solution dielectric constant, and concentration of solution and flow rate. Homogeneous electrospun P(BA‐co‐MMA) fibers as small as 390 ± 30 nm were successfully produced. The dielectric properties of polymer solution strongly affected the diameter and morphology of electrospun polymer fibers. The bending instability of the electrospinning jet increased with higher dielectric constant. The charges inside the polymer jet tended to repel each other so as to stretch and reduce the diameter of the polymer fibers by the presence of high dielectric environment of the solvent. The extent to which the choice of solvent affects the nanofiber characteristics were well illustrated in the electrospinning of [P(BA‐co‐MMA)] from solvents and mixed solvents. Nanofiber mats showed relatively high hydrophobicity with intrinsic water contact angle up to 120°. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 4264–4272, 2013  相似文献   

14.
Three Polyvinylidene fluoride (PVDF) different in molecular structure were used to produce nanocomposities films by cast extrusion with a particular emphasis on maximizing the β crystal phase content. The PVDF/clay compounding followed by cast film production was carried out through melt extrusion using a twin screw extruder equipped with a slit die. X‐ray diffraction (XRD) results showed that clay melt intercalation is almost similar for all three PVDFs. The XRD results also revealed that nanocomposite films from PVDF with branched chain structure (PVDFB) generated the greatest amount of β phase. FTIR spectroscopy measurements confirmed the XRD results but also revealed that significant stretching of the melt films at the die or rapid cooling would adversely affect the formation of β phase. The amount of β phase obtained based on nanoclay compounding was compared with that obtained from conventional method: stretching of molded PVDF film with initial α phase. Stretching of PVDF film at 60°C yielded pure β phase that means complete transformation of α to β. From mechanical properties, tensile tests were carried out on PVDF nanocomposite films to evaluate mechanical strength. PVDF with low molecular weight exhibited a very low strain at break while branched PVDF and high molecular weight PVDF could sustain more strain. POLYM. ENG. SCI., 2009. © 2008 Society of Plastics Engineers  相似文献   

15.
Poly(vinylidene fluoride) (PVDF) nanofibrous mats containing silver nanoparticles were prepared by electrospinning. The diameter of the nanofibers ranged between 100 and 300 nm, as revealed by scanning electron microscopy. The silver nanoparticles were dispersed, but some aggregation was observed with transmission electron microscopy. The content of silver nanoparticles incorporated into the PVDF nanofibrous mats was determined by inductively coupled plasma and X‐ray photoelectron spectroscopy. The antibacterial activities of the samples were evaluated with the colony‐counting method against Staphylococcus aureus (Gram‐positive) and Klebsiella pneumoniae (Gram‐negative) bacteria. The results indicate that the PVDF nanofibrous mats containing silver nanoparticles showed good antibacterial activity compared to the PVDF nanofiber control. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

16.
Poly(N‐vinylpyrrolidone) (PVP) groups were grafted onto poly(3‐hydroxybutyrate‐co‐3‐hydroxyvalerate) (PHBV) backbone to modify the properties of PHBV and synthesize a new novel biocompatible graft copolymer. Based on these graft copolymers, electrospun fiber mats and commonly cast films were explored as drug delivery vehicles using tetracycline hydrochloride as a model drug. Toward that end, the fibers were electrospun and the films were cast from chloroform solutions containing a small amount of methanol to solubilize the drug. The Brookfield viscosities of the solution were determined to achieve the optimal electrospinning conditions. The vitro release of the tetracycline hydrochloride from these new drug delivery systems was followed by UV–vis spectroscopy. To probe into the factors affected on the release behavior of these drug delivery systems, their water absorbing abilities in phosphate buffer solution were investigated, together with their surface hydrophilicity, porosity and crystallization properties were characterized by water contact angles, capillary flow porometer, DSC, and WAXD, respectively. The morphological changes of these drug delivery vehicles before and after release were also observed with SEM. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

17.
The nanofiber deposition method, by electrospinning, was employed to introduce antibacterial activity and biocompatibility to the surface of poly (ethylene terephthalate) (PET) textiles. The polymer blends of PET and chitosan were electrospun on to the PET micro‐nonwoven mats for biomedical applications. The PET/chitosan nanofibers were evenly deposited on to the surface, and the diameter of the nanofibers was in the range between 500 and 800 nm. The surface of the nanofibers was characterized using SEM, ESCA, AFM, and ATR‐FTIR. The wettability of the PET nanofibers was significantly enhanced by the incorporation of chitosan. The antibacterial activity of the samples was evaluated utilizing the colony counting method against Staphylococcus aureus and Klebsiella pneumoniae. The results indicated that the PET/chitosan nanofiber mats showed a significantly higher growth inhibition rate compared with the PET nanofiber control. In addition, the fibroblast cells adhered better to the PET/chitosan nanofibers than to the PET nanofibers mats, suggesting better tissue compatibility. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

18.
The aim of this study was to develop novel biomedical electrospun nanofiber mats for controlled drug release, in particular to release a drug directly to an injury site to accelerate wound healing. Here, nanofibers of chitosan (CS), poly(ethylene oxide) (PEO), and a 90 : 10 composite blend, loaded with a fluoroquinolone antibiotic, such as ciprofloxacin hydrochloride (CipHCl) or moxifloxacin hydrochloride (Moxi), were successfully prepared by an electrospinning technique. The morphology of the electrospun nanofibers was investigated by scanning electron microscopy. The functional groups of the electrospun nanofibers before and after crosslinking were characterized by Fourier transform infrared spectroscopy. X‐ray diffraction results indicated an amorphous distribution of the drug inside the nanofiber blend. In vitro drug‐release evaluations showed that the crosslinking could control the rate and period of drug release in wound‐healing applications. The inhibition of bacterial growth for both Escherichia coli and Staphylococcus aureus were achieved on the CipHCl‐ and Moxi‐loaded nanofibers. In addition, both types of CS/PEO and drug‐containing CS/PEO nanofibers showed excellent cytocompatibility in the cytotoxicity assays. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42060.  相似文献   

19.
The polyvinylpyrrolidone (PVP)/poly(vinylidene fluoride) (PVDF) core–shell nanofiber mats with superhydrophobic surface have been prepared via electrospinning its homogeneous blending solutions, and the formation of the core–shell structure was achieved by the thermal induced phase separation assisted with the low surface tension of PVDF. The electrospinnability of the blending solutions was also investigated by varying the blending ratio of the PVP and PVDF, and it enhanced with the increase of PVP content. SEM and TEM results showed that the fibers size was varied in the range of 100 nm–600 nm with smooth surface and core–shell structure. The composition of the shell layer was determined by the XPS analysis, and further confirmed by water contact angle (WCA) testing. As the fraction of PVDF exceeding PVP in the electrospinning solutions, the nanofiber mats showed superhydrophobic property with the WCA above 120°. It indicated that the PVDF was concentrated in the shell layer of the fibers. X-Ray diffraction (XRD) and attenuated total reflection infrared spectroscopy (ATR-IR) analysis indicated that the PVDF was aggregated with the β-phase crystallite as dominant crystallite. The nanofiber mats with the gas breathability and watertightness ability due to the porous structure and superhydrophobic would be potential applied in wound healing.  相似文献   

20.
This article reports the fabrication of water‐stable electrospun mats made from water‐soluble poly(vinyl alcohol) and comprising ultrafine nanofibers for a high surface area to volume ratio as required for the adsorption of crystal violet. Acid‐catalyzed crosslinking is uniquely demonstrated as a facile strategy to improve water stability and, just as importantly, fine‐tune the nanofiber size of the electrospun mats. Amine‐functionalized graphene nanoplatelets are incorporated as an adsorption performance enhancer instead of the more widely reported graphene oxide. The functionalized graphene also facilitates fabrication of the composite electrospun mats by direct mixing of the water‐dispersible graphene with the aqueous polymer solution. The enhanced adsorption performance of the polymer nanocomposite mats is explained in detail at the molecular level, while the adsorption mechanism is supported by adsorption isotherm and related kinetic data. Moreover, the adsorbent mats can be removed from the water after use with the mat integrity still maintained. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46318.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号