首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We use Mann–Kendall trend test and Lepage method to study spatial and temporal variations of the streamflow series over the past 50 years based on daily hydrologic data from six gauging stations in the Yellow River basin. Research results indicate that: (1) The streamflow of the Yellow River basin is decreasing and water resource deficit tends to be more serious from the upper to the lower Yellow River basin; (2) Zero-flow days are observed after 1970 and overwhelmingly prevail during 1990–2000. Moreover, zero-flow events are observed mainly during spring and summer; (3) Low flow events are more sensitive to climatic changes and human activities when compared to the high flow events, which is mainly reflected by larger fluctuation of timing of change points. Furthermore, the timing of change point of hydrologic events tends to be earlier from the upper to the lower Yellow River basin, indicating more intensive impacts of human activities on water resource in the lower Yellow River basin. The current research will be greatly helpful for sound and effective water resource management in the Yellow River basin, being characterized by serious water deficit.  相似文献   

2.
Unified water flow regulation has been implemented in the Yellow River, Hei River and Tarim River in China since 1999 as a result of institutional reforms. It has been one of the most important water resources management practices in China during recent years and has generated significant impacts. Based on the data of such an experiment in the Yellow River during 1999 to 2004, a “with-without” scenario analysis method is employed in the paper to evaluate the economic and hydrological impacts of regulation through a holistic model coupling economic water use and hydrologic cycle applied to the study basin. The results show that about 2.5% of GDP was increased every year and the Flow Cutoff Events were avoided as a result of the unified water flow regulation.  相似文献   

3.
River regulation can alter the frequency and magnitude of subdaily flow variations causing major impacts on ecological structure and function. We developed an approach to quantify subdaily flow variation for multiple sites across a large watershed to assess the potential impacts of different dam operations (flood control, run‐of‐river hydropower and peaking hydropower) on natural communities. We used hourly flow data over a 9‐year period from 30 stream gages throughout the Connecticut River basin to calculate four metrics of subdaily flow variation and to compare sites downstream of dams with unregulated sites. Our objectives were to (1) determine the temporal scale of data needed to characterize subdaily variability; (2) compare the frequency of days with high subdaily flow variation downstream of dams and unregulated sites; (3) analyse the magnitude of subdaily variation at all sites and (4) identify individual sites that had subdaily variation significantly higher than unregulated locations. We found that estimates of flow variability based on daily mean flow data were not sufficient to characterize subdaily flow patterns. Alteration of subdaily flows was evident in the number of days natural ranges of variability were exceeded, rather than in the magnitude of subdaily variation, suggesting that all rivers may exhibit highly variable subdaily flows, but altered rivers exhibit this variability more frequently. Peaking hydropower facilities had the most highly altered subdaily flows; however, we observed significantly altered ranges of subdaily variability downstream of some flood‐control and run‐of‐river hydropower dams. Our analysis can be used to identify situations where dam operating procedures could be modified to reduce the level of hydrologic alteration. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

4.
黄河调水调沙对河口及其三角洲的影响和评价   总被引:18,自引:1,他引:17  
分析了黄河调水调沙运用期进入河口的水沙条件,然后从三个方面包括防洪形势、生态环境变化、岸线变迁等,对黄河调水调沙运用对河口的积极影响进行了概括总结,文章最后指出:调水调沙作为河流治理最具生命力的举措和发展方向,如何发挥其更有效的作用,应切实注意解决好以下四个方面的问题:①调水调沙运用应注意解决多目标、多效应的协调和实现;②在进行调水调沙运用时,还应着力塑造相对有利的包括河床边界条件在内的其它相关条件;③应着力加强水文水情和河床演变趋势预报工作,科学决策调水调沙运用的时机和方式;④应科学对待调水调沙运用进入河口的泥沙问题。  相似文献   

5.
黄河上游梯级水库运行的生态影响研究   总被引:3,自引:0,他引:3  
彭少明  尚文绣  王煜  鲁俊  郑小康 《水利学报》2018,49(10):1187-1198
为科学揭示梯级水库群运行对河流生态的影响,基于黄河上游实测水沙序列,采用IHA(Indicators of Hydrologic Alteration)指标体系,对比分析了不同工程运行时期黄河上游水文情势变化,运用多系列贡献率分割法,量化了不同影响因子对水文情势变化的贡献率。通过输沙率法结合断面淤积形态分析揭示了黄河上游河道冲淤演变。结果表明,黄河上游水库运行对河流径流及河道形态产生了深刻影响,进而影响了河流生态。水库运行后非汛期月均流量上升、汛期月均流量下降、高流量事件发生频率与流量减少,径流趋于平缓,且宁蒙河段泥沙淤积、断面形态趋于宽浅。分析表明水库运行是造成黄河上游兰州水文情势变化的主要原因,以及石嘴山、头道拐水文情势变化的重要原因,高流量事件的减少加剧了河道淤积,使河流生态朝不利方向演化,为维护黄河上游生态健康有必要实施生态调度,提高涨水期和洪水期下泄流量并制造高流量事件。研究为评估梯级水库运行的生态影响、指导梯级水库生态调度提供方向性参考。  相似文献   

6.
If ecological management of river ecosystems is to keep pace with increasing pressure to abstract, divert and dam, we must develop general flow–ecology relationships to predict the impacts of these hydrologic alterations. Regional flow gradient analyses are a promising tool to quickly reveal these functional relationships, but there are considerable uncertainties in this method because of variability in the historical extent of flow data across different rivers, combined with multiple indices characterizing the ecological attributes of flow regimes. In response, we outline an objective framework for analysing spatial hydrologic gradients that addresses three major sources of uncertainty: robust estimation of flow indices, the potential for temporal trends to confound spatial variation in flow regimes and the statistical robustness to detect underlying hydrological gradients. The utility of our framework was examined in relation to flow regimes across multiple braided river catchments in Canterbury, New Zealand. We found that a subset of flow indices could be robustly estimated using only 10 years of flow data, although indices that captured flow ‘timing’ required longer time series. Temporal trends were unlikely to confound conclusions from a spatial hydrologic gradient analysis, and there were three statistically supported hydrologic gradients related to flow magnitude, flow variability and low flow events. The widespread application of robust spatial flow gradient analyses has the potential to further our understanding of how altered flow regimes affect the ecology of freshwater and riparian ecosystems, thereby providing the evidence base to inform river management. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

7.
研究黄河上游径流复杂度变化特征,对揭示区域径流演化规律具有重要意义.同时采用灵活样本熵和多尺度熵对该区域干、支流12个水文站1956-2015年的年、汛期及非汛期径流复杂性进行测度,分析不同时间尺度下径流复杂度变化特征.结果 表明:黄河上游干流的年径流呈不显著减小趋势,汛期径流减小的同时非汛期径流增大.支流除湟水民和站...  相似文献   

8.
黄河内蒙河段水流数值模拟研究   总被引:1,自引:0,他引:1  
针对黄河内蒙河段孔兑较多、洪水变幅较大、水文监测站点较少的实际情况,采用数值模拟方法,建立了内蒙河段水流数学模型,通过对模型的验证及孔兑入汇计算结果的分析,表明该模型可以真实反映内蒙河段孔兑入汇的流态及相关水力要素变化,可以作为该河段河道规划整治的研究手段之一。黄河内蒙河段孔兑的大流量入汇会对干流区的流态以及水位产生明显影响,使流向改变、水流上滩、水位壅高,因此区域防洪规划和河道整治中应予以高度重视。考虑到内蒙河段孔兑入汇干流带来的影响,不仅体现在水流形态上,而且泥沙淤积是河床演变的关键所在,加之短时段内又难以模拟水流的高含沙量过程,所以下一步工作将是在现有水流模拟基础上模拟计算含沙水流过程。  相似文献   

9.
论维持黄河健康生命的关键技术与调控措施   总被引:15,自引:0,他引:15  
随着流域来水来沙过程的大幅变化及人类活动的日趋剧烈,黄河发生了很大的变化,主要表现为:流域生态环境退化,水土流失严重,悬河加剧,功能性断流与水患并存,水质污染日益加剧。本文系统地分析了导致黄河健康恶化的因素,提出基于全流域综合调控的“临界控制论”,可作为维持黄河健康生命的理论基础,它包括黄河流域不同层次的临界指标体系和流域水沙资源优化配置的数学模型。构建黄河流域水沙调控体系是维持黄河健康生命的技术支撑,其主要功能是增水、减沙、调节水沙过程,按黄河现有的条件,下游河道塑造和维持中水河槽的平滩流量约为4000m^3/s左右。  相似文献   

10.
Hydrologic regimes are increasingly altered under the impacts of climate change and human activities. Streamflow data from 1960 to 2014 were analysed to investigate changes in the flow regimes in the Yangtze River using multiple hydrologic metrics and the Budyko framework. The long‐term data were separated into two periods: the preimpact period (1960–2002) and the postimpact period (2003–2014), according to the year the Three Gorges Dam began operation. The results showed that both indicators of hydrologic alteration and ecoflow metrics were clearly altered. The highly changed indicators included flow in February, annual minimum 1‐, 3‐, 7‐, 30‐, and 90‐day flows, base flow index, date of annual minimum flow, and low pulse duration. The integrated degree of hydrologic alteration ranged from 41% to 61%, indicating a moderate alteration of the flow regimes in the Yangtze River. The regulation of the Three Gorges Dam increased low flow and weakened peak flow, which resulted in autumn ecodeficit and winter ecosurplus increasing dramatically since the 2000s. The ecoflow metrics were more sensitive to precipitation than to potential evapotranspiration. The joint effects of human activities and climate change varied among the river reaches in the different decades. The streamflow was mainly affected by human activities in the upper reach during the 1970s–1990s, with a contribution ratio ranging from 63% to 77%. Climate change shifted to a major contributor in the middle and lower reaches since the 1980s as well as in the upper reach in 2000–2014, accounting for 50–82% of the streamflow changes. These different responses were primarily caused by the variations of precipitation and intensive human activities, particularly the rapid growth of reservoirs and other large projects since the 1970s in the upper Yangtze River. These results provide interesting insights into the spatio‐temporal hydrologic alteration across the Yangtze River.  相似文献   

11.
Impact of Human Intervention and Climate Change on Natural Flow Regime   总被引:1,自引:0,他引:1  
According to the ‘natural flow paradigm’, any departure from the natural flow condition will alter the river ecosystem. River flow regimes have been modified by anthropogenic interventions and climate change is further expected to affect the biotic interactions and the distribution of stream biota by altering streamflow. This study aims to evaluate the hydrologic alteration caused by dam construction and climatic changes in a mesoscale river basin, which is prone to both droughts and monsoonal floods. To analyse the natural flow regime, 15 years of observed streamflow (1950–1965) prior to dam construction is used. Future flow regime is simulated by a calibrated hydrological model Soil and Water Assessment Tool (SWAT), using ensemble of four high resolution (~25 km) Regional Climate Model (RCM) simulations for the near future (2021–2050) based on the SRES A1B scenario. Finally, to quantify the hydrological alterations of different flow characteristics, the Indicators of Hydrological Alteration (IHA) program based on the Range of Variability Approach (RVA) is used. This approach enables the assessment of ecologically sensitive streamflow parameters for the pre- and post-impact periods in the regions where availability of long-term ecological data is a limiting factor. Results indicate that flow variability has been significantly reduced due to dam construction with high flows being absorbed and pre-monsoon low flows being enhanced by the reservoir. Climate change alone may reduce high peak flows while a combination of dam and climate change may significantly reduce variability by affecting both high and low flows, thereby further disrupting the functioning of riverine ecosystems. We find that, in the Kangsabati River basin, influence of dam is greater than that of the climate change, thereby emphasizing the significance of direct human intervention.  相似文献   

12.
新中国成立以来,黄河流域(片)防洪减灾取得了举世瞩目的巨大成就,但黄河是一条流域自然条件复杂,河情特殊的河流,其洪水威胁依然是我国的心腹之患,西北内陆河防洪设施还很薄弱,为指导黄河流域(片)防洪基础设施建设,提高防御洪水的能力,根据水利部“关于组织开展防洪规划编制工作的通知”和《全国防洪规划任务书》的有关要求,黄河水利委员会组织开展了黄河流域(片)防洪规划编制工作。该项目是水利部下达的重大前期工作项目,是人民治黄以来首次开展的全流域及西北内陆河防洪规划,是全国防洪规划的重要组成部分。规划范围包括黄河干支流和西北内陆河重点防洪河段、16座重要城市和116座大中型病险库。主要规划目标是:至2020年,初步建成黄河下游防洪减淤工程体系,其他防洪河段的河防工程达到国家规定的防洪设计标准。与以往规划相比,本次防洪规划涉及范围广,内容丰富,反映了新时期的治水思路,体现了水利部部关于“新资料、新思路、新技术、新方法”的要求。  相似文献   

13.
The Range of Variability Approach (RVA) is employed to investigate the variability and spatial patterns of hydrological and sediment changes (1953–2000) induced by intensified human activities, i.e. the implementation of water and soil conservation measures, in nine major catchments of the Loess Plateau, China. Results indicate that: (1) streamflow and sediment load regimes were greatly changed by the implementation of conservation measures; (2) similar spatial patterns of high hydrological and sediment changes resulting from the intensive implementation of conservation measures are observed in most catchments of the middle Yellow River. However, slightly different behaviours of changes exist due to the unique complexity of hydrological and sediment processes in this region and (3) the impacts of various conservation measures on hydrological and sediment processes are closely associated with the extent and types of these measures. Engineering works have a quite immediate impact on streamflow and sediment regimes. Considerable vegetation controls are recognized as additional important driving forces for high hydrological and sediment alterations among various soil conservation measures. In vegetation controls, afforestation is the major factor causing the changes of runoff and sediment processes in these nine catchments. The results of the current study will be greatly beneficial to the regional water resources management and restoration of eco‐environmental system in the middle Yellow River basin characterized by intensified soil‐conservation measures under the changing environment. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

14.
黄河水量统一调度与调水调沙对河口的生态水文影响   总被引:2,自引:0,他引:2  
从具有生态学意义的流量、频率、出现时间、持续时间和变化率等5种水文要素出发,采用水文变化指标体系定量评估了黄河水量统一调度与调水调沙对河口段生态水文情势的影响,讨论了河口环境水流需求以及调水调沙后水文情势对环境水流的满足程度。研究结果表明,与水量统一调度前相比,水量统一调度与调水调沙后利津断面水文情势有所改善,年极小值流量明显增加,但是水文过程变化率降低,洪水漫滩过程消失,水文过程趋于平缓。目前河口段水文情势能够满足枯水期适宜生态流量需求,汛前4—5月关键期无法满足适宜生态流量与流量脉冲过程,汛期除缺乏洪水脉冲过程外,基本能够满足高流量输沙需求。  相似文献   

15.
河道型水库调度需要综合考虑入库洪水、人工调控和库区河道地形等因素对洪水演进传播过程的影响。通过分析总结河道型水库洪水波特征和动库容特性方面的研究成果,明确了河道型水库需要采用水文水动力模型耦合方法进行动库容调洪,但需要关注人工调控对坝址水位流量关系的干扰。随后分析总结了水库河道糙率特性方面的研究,指出水库洪水演进计算需要考虑水流流动型态对糙率的影响。进一步总结了近坝区水流特性的现有成果,指出近坝区水流三维流动特征显著,把坝前区域断面作为边界条件,计算时可能会引起系统性误差,明确了今后应该深入开展人工调控对近坝区断面过流能力的影响和糙率率定方面的研究,以提高洪水演进模型精度。  相似文献   

16.
Climate change and human activities have changed a number of characteristics of river flow in the Taihu Basin. Based on long-term time series of hydrological data from 1986 to 2015, we analyzed variability in precipitation, water stage, water diversion from the Yangtze River, and net inflow into Taihu Lake with the Mann-Kendall test. The non-stationary relationship between precipitation and water stage was first analyzed for the Taihu Basin and the Wuchengxiyu(WCXY) sub-region. The optimized regional and urban regulation schemes were explored to tackle high water stage problems through the hydrodynamic model. The results showed the following:(1) The highest, lowest, and average Taihu Lake water stages of all months had increasing trends. The total net inflow into Taihu Lake from the Huxi(HX) sub-region and the Wangting Sluice increased significantly.(2) The Taihu Lake water stage decreased much more slowly after 2002; it was steadier and higher after 2002. After the construction of Wuxi urban flood control projects, the average water stage of the inner city was 0.16 e0.40 m lower than that of suburbs in theflood season, leading to the transfer of flooding in inner cities to suburbs and increasing inflow from HX into Taihu Lake.(3) The regional optimized schemes were more satisfactory in not increasing the inner city flood control burden, thereby decreasing the average water stage by0.04 e0.13 m, and the highest water stage by 0.04 e0.09 m for Taihu Lake and the sub-region in the flood season. Future flood control research should set the basin as the basic unit. Decreasing diversion and drainage lines along the Yangtze River can take an active role in flood control.  相似文献   

17.
郑州黄河不同来源区的洪水有着不同的特点,洪水在运行过程中与河床交互作用,水流与河床、滩地与主槽俱发生泥沙交换;生产堤的存在改变了洪水正常的演进规律;洪水的传播时间和水位表现受多种因素的制约;高含沙洪水对防洪工程威胁大,有其突出的特点;洪水预测是一项深入、细致、复杂的工作,黄河水文资料应该向流域内外专家学者开放。  相似文献   

18.
进入90年代以来,黄河下游河道连续发生断流,且有初始时间提前、时段延长、河段向上延伸的趋势。黄河断流给下游及沿黄地区带来不利影响,对黄河下游防洪和生态环境也造成威胁。要避免和缓解断流发生,必须大力开展节约用水,实现国务院批准的分水方案以法管水;在枯水年、枯水季节对水资源实行统一调度;积极兴建干流调蓄工程,提高黄河水资源利用的整体效益。  相似文献   

19.
A combination of the rainfall-runoff module of the Xin’anjiang model, the Muskingum routing method, the water stage simulating hydrologic method, the diffusion wave nonlinear water stage method, and the real-time error correction method is applied to the real-time flood forecasting and regulation of the Huai River with flood diversion and retarding areas. The Xin’anjiang model is used to forecast the flood discharge hydrograph of the upstream and tributary. The flood routing of the main channel and flood diversion areas is based on the Muskingum method. The water stage of the downstream boundary condition is calculated with the water stage simulating hydrologic method and the water stages of each cross section are calculated from downstream to upstream with the diffusion wave nonlinear water stage method. The input flood discharge hydrograph from the main channel to the flood diversion area is estimated with the fixed split ratio of the main channel discharge. The flood flow inside the flood retarding area is calculated as a reservoir with the water balance method. The faded-memory forgetting factor least square of error series is used as the real-time error correction method for forecasting discharge and water stage. As an example, the combined models were applied to flood forecasting and regulation of the upper reaches of the Huai River above Lutaizi during the 2007 flood season. The forecast achieves a high accuracy and the results show that the combined models provide a scientific way of flood forecasting and regulation for a complex watershed with flood diversion and retarding areas.  相似文献   

20.
结合黄河下游防洪出现的新情况、新问题,在小浪底水库运用初期,水库拦洪库容将增加近80亿m^3的条件下,通过分析计算,提出小浪底水库运用初期黄河下游洪水高度的原则意见:昼利用水库拦蓄洪水;在确保进防安全的前提下,充分利用河道排泄洪水;相机运用蓄滞洪区分滞洪水。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号