首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
A new fabrication strategy in which Ag plasmonics are embedded in the interface between ZnO nanorods and a conducting substrate is experimentally demonstrated using a femtosecond‐laser (fs‐laser)‐induced plasmonic ZnO/Ag photoelectrodes. This fs‐laser fabrication technique can be applied to generate patternable plasmonic nanostructures for improving their effectiveness in hydrogen generation. Plasmonic ZnO/Ag nanostructure photoelectrodes show an increase in the photocurrent of a ZnO nanorod photoelectrodes by higher than 85% at 0.5 V. Both localized surface plasmon resonance in metal nanoparticles and plasmon polaritons propagating at the metal/semiconductor interface are available for improving the capture of sunlight and collecting charge carriers. Furthermore, in‐situ X‐ray absorption spectroscopy is performed to monitor the plasmonic‐generating electromagnetic field upon the interface between ZnO/Ag nanostructures. This can reveal induced vacancies on the conduction band of ZnO, which allow effective separation of charge carriers and improves the efficiency of hydrogen generation. Plasmon‐induced effects enhance the photoresponse simultaneously, by improving optical absorbance and facilitating the separation of charge carriers.  相似文献   

2.
Hydrogen evolution reaction (HER) in alkaline media urgently requires electrocatalysts concurrently possessing excellent activity, flexible free‐standing capability, and low cost. A honeycombed nanoporous/glassy sandwich structure fabricated through dealloying metallic glass (MG) is reported. This free‐standing hybrid shows outstanding HER performance with a very small overpotential of 37 mV at 10 mA cm?2 and a low Tafel slope of 30 mV dec?1 in alkaline media, outperforming commercial Pt/C. By alloying 3 at% Pt into the MG precursor, a honeycombed Pt75Ni25 solid solution nanoporous structure, with fertile active sites and large contact areas for efficient HER, is created on the dealloyed MG surface. Meanwhile, the surface compressive lattice‐strain effect is also introduced by substituting the Pt lattice sites with the smaller Ni atoms, which can effectively reduce the hydrogen adsorption energy and thus improve the hydrogen evolution. Moreover, the outstanding stability and flexibility stemming from the ductile MG matrix also make the hybrid suitable for practical electrode application. This work not only offers a reliable strategy to develop cost‐effective and flexible multicomponent catalysts with low Pt usage for efficient HER, but also sheds light on understanding the alloying effects of the catalytic process.  相似文献   

3.
4.
Hydrogen has emerged as an environmentally attractive fuel and a promising energy carrier for future applications to meet the ever-increasing energy challenges. The safe and efficient storage and release of hydrogen remain a bottleneck for realizing the upcoming hydrogen economy. Hydrogen storage based on liquid-phase chemical hydrogen storage materials is one of the most promising hydrogen storage techniques, which offers considerable potential for large-scale practical applications for its excellent safety, great convenience, and high efficiency. Recently, nanopore-supported metal nanocatalysts have stood out remarkably in boosting the field of liquid-phase chemical hydrogen storage. Herein, the latest research progress in catalytic hydrogen production is summarized, from liquid-phase chemical hydrogen storage materials, such as formic acid, ammonia borane, hydrous hydrazine, and sodium borohydride, by using metal nanocatalysts confined within diverse nanoporous materials, such as metal–organic frameworks, porous carbons, zeolites, mesoporous silica, and porous organic polymers. The state-of-the-art synthetic strategies and advanced characterizations for these nanocatalysts, as well as their catalytic performances in hydrogen generation, are presented. The limitation of each hydrogen storage system and future challenges and opportunities on this subject are also discussed. References in related fields are provided, and more developments and applications to achieve hydrogen energy will be inspired.  相似文献   

5.
周向阳  杨焘  王辉 《材料导报》2016,30(21):1-7, 32
铝是地壳中含量最丰富的金属元素,也是一种重要的轻金属。由于其活泼的化学性质和较高的能量密度,铝作为一种新型能源材料正日益受到人们的关注。综述了国内外铝基合金水解制氢的研究进展,在对比分析各种铝基合金水解制氢性能以及成本等基础上,提出了铝基合金水解制氢的发展方向。  相似文献   

6.
7.
Materials Science - Magnesium hydride (MgH2) is a hydrogen-rich compound generating significant amounts of hydrogen in the process of hydrolysis, i.e., in the course of its chemical interaction...  相似文献   

8.
水解制氢是一种常温常压下的现场制氢方式。由于水解制氢材料氢含量高, 储存容易, 运输方便, 安全可靠, 一直受到研究者们的关注。本文综述了近年来水解制氢材料的总体发展情况, 介绍了三类主要的水解制氢材料, 包括硼氢化物(NaBH4, NH3·BH3)、金属(Mg, Al)以及金属氢化物(MgH2), 对不同材料的制氢原理、主要问题、催化剂与材料设计进行了详细介绍, 比较了不同体系的特点与制氢成本, 并对水解制氢及水解制氢材料的现状和商业化面临的困难做了评价, 最后对未来的发展方向进行了展望。  相似文献   

9.
Solar-driven photoelectrochemical (PEC) water splitting is a promising approach toward sustainable hydrogen (H2) generation. However, the design and synthesis of efficient semiconductor photocatalysts via a facile method remains a significant challenge, especially p-n heterojunctions based on composite metal oxides. Herein, a MOF-on-MOF (metal-organic framework) template is employed as the precursor to synthesize In2O3/CuO p-n heterojunction composite. After incorporation of small amounts of graphene nanoribbons (GNRs), the optimized PEC devices exhibited a maximum current density of 1.51 mA cm−2 (at 1.6 V vs RHE) under one sun illumination (AM 1.5G, 100 mW cm−2), which is approximately four times higher than that of the reference device based on only In2O3 photoanodes. The improvement in the performance of these hybrid anodes is attributed to the presence of a p-n heterojunction that enhances the separation efficiency of photogenerated electron-hole pairs and suppresses charge recombination, as well as the presence of GNRs that can increase the conductivity by offering better path for electron transport, thus reducing the charge transfer resistance. The proposed MOF-derived In2O3/CuO p-n heterojunction composite is used to demonstrate a high-performance PEC device for hydrogen generation.  相似文献   

10.
氢由于具有高效率和高功率密度而被认为是一种出色的清洁能源。化学储氢材料要求具有高的氢储存量。氨硼烷具有高氢含量(19.6%),且在普通贮存条件下稳定,被认为是有吸引力的储氢材料之一。由于氨硼烷在常温下不易放氢,故放氢催化剂成为氨硼烷放氢研究的核心技术和主要方向。金属催化剂可以显著提高水解放氢速度,是影响氨硼烷水解放氢的关键因素,但是金属颗粒催化剂一般都存在颗粒粒径生长过快、易团聚等缺点。为了解决这一问题,研究者选择不同的载体来分散催化剂,使催化剂金属分散在载体表面,防止团聚和过快增长,从而暴露更多活性位点,使催化氨硼烷放氢速率更快。文章将针对不同催化剂载体对氨硼烷水解的催化效果进行阐述。  相似文献   

11.
采用溶胶-凝胶法制备了钛酸锶,进而用固相法制备了氮掺杂SrTiO3,并用光沉积和氢气还原法制备了Pt负载的氮掺杂SrTiO3光催化剂.用XRD、SEM、UV-Vis漫反射和荧光光谱对其进行了表征和分析,考察了光催化剂在可见光下的产氢活性.研究了不同氮源、掺杂量、烧结温度和Pt负载量对催化剂产氢活性的影响.结果表明,三种不同氮源剂其掺杂效果为六次亚甲基四胺(HMT)>EDTA>尿素,而EDTA掺氮效果稍低于HMT.当氮源剂为HMT,SrTiO3与HMT质量比为1:3,焙烧温度为450℃时,所制备的光催化剂具有最佳的光催化产氢活性.在负载金属铂后,产氢活性有较大幅度的提高,其中用氢气还原法制备所得的光催化剂较光沉积法制备的具有更高的光催化活性,在最佳负载量均为2wt%时,两种光催化剂6h内的产氢量分别为6.89mmol和2.24mmol,分别是未负载铂样品产氢量的12倍和4倍多.  相似文献   

12.
13.
14.
15.
16.
17.
甲酸(FA)因具有储氢量高、易加注等优点而成为极具应用前景的新型储氢材料, 寻求高效率催化剂对于解决甲酸制氢反应动力学缓慢的问题尤为重要。本工作以聚乙烯亚胺修饰石墨烯(PEI-rGO)作为催化剂衬底, 通过湿化学法制备PEI-rGO担载型AuPd纳米复合材料(Au0.3Pd0.7/PEI-rGO)。Au0.3Pd0.7/PEI-rGO催化剂在催化FA制氢的反应中表现出极其优异的活性, 在无添加剂辅助下的转化频率(TOF)为2357.5 molH2∙ molcatalyst -1∙h -1, 高于大多数相同反应条件下的异相催化剂。这归因于PEI-rGO衬底与AuPd纳米颗粒之间的强相互作用对金属活性组分的尺寸、分散度和电子结构的调控。此外, 循环测试结果表明该催化剂的稳定性良好。  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号