共查询到20条相似文献,搜索用时 15 毫秒
1.
In this article, we report the preparation of conducting natural rubber (NR) with polyaniline (Pani). NR was made into a conductive material by the compounding of NR with Pani in powder form. NR latex was made into a conductive material by the in situ polymerization of aniline in the presence of NR latex. Different compositions of Pani–NR semi‐interpenetrating networks were prepared, and the dielectric properties of all of the samples were determined in microwave frequencies. The cavity perturbation technique was used for this study. A HP8510 vector network analyzer with a rectangular cavity resonator was used for this study. S bands 2–4 GHz in frequency were used. Thermal studies were also carried out with thermogravimetric analysis and differential scanning calorimetry. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 2682–2686, 2007 相似文献
2.
Ethylene–propylene–diene monomer/polytetrafluorethylene (EPDM/PTFE) composites based on EPDM and electron beam irradiated PTFE powders (MS‐II, MS‐III, and MS‐V, with mean diameter 5 μm, 1 μm, and 0.1 μm, respectively) were prepared by a mechanical compounding technique. The curing characteristics, morphologies, mechanical properties, and abrasion behaviors of these composites were investigated. The curing measurements indicated that the addition of lower loading of MS‐III or MS‐V enhanced the lubrication of EPDM compounds and delayed the curing process. The morphological structure of the composites demonstrated that the MS‐III and MS‐V were uniformly dispersed in EPDM matrix and the efficient polymer–filler interfacial interactions were constructed. In comparison with EPDM/MS‐II and EPDM/MS‐III, EPDM/MS‐V exhibited outstanding tensile strength, tear strength, elongation at break, and abrasion resistance due to the nanometer particle dimension and good dispersion of MS‐V as well as the stronger interfacial interactions between MS‐V and the EPDM matrix. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012 相似文献
3.
Blends based on ethylene–propylene–diene monomer rubber (EPDM) and acrylonitrile butadiene rubber (NBR) was prepared. Sulfur was used as the vulcanizing agent. The effects of blend ratio on the cure characteristics and mechanical properties, such as stress–strain behavior, tensile strength, elongation at break, hardness, rebound resilience, and abrasion resistance have been investigated. Tensile and tear strength showed synergism for the blend containing 30% of NBR, which has been explained in terms of morphology of the blends attested by scanning electron micrographs. A relatively cocontinuous morphology was observed for 70 : 30, EPDM/NBR blend system. The experimental results have been compared with the relevant theoretical models. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007 相似文献
4.
In this study, the prime factor determining the size, shape, and distribution of liquid‐crystalline polymer (LCP) was the viscosity ratio at the processing conditions. The fiber‐forming capacity of the LCP depended on the viscosity of the ethylene–propylene–diene monomer rubber (EPDM). With increasing LCP content, the tensile and tear strengths did not increase, perhaps because of incompatibility between the EPDM and LCP. The hardness increased because of the hard mesogenic groups in the LCP. The percentage swelling decreased as the LCP content increased. With increasing LCP content, processability became easier because of a lower melt viscosity. The scorch time increased at higher LCP levels. A higher percentage crystallinity was observed with increasing LCP content. Scanning electron microscopy clearly showed the fiber phase formation, which was two‐dimensionally isotropic in nature, confirming fiber formation even in a shear field. The addition of LCP improved the thermal stability. The onset degradation temperatures shifted to higher values with increasing LCP content. Dynamic mechanical thermal analysis revealed that with the addition of LCP, the mechanical damping increased at its lower level. High‐temperature processing increased the effective amorphous zone. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 711–718, 2004 相似文献
5.
The influence of aluminum hypophosphide (AlHPi) and nanosilica on the flame‐retardant and mechanical property of ethylene–propylene–diene monomer (EPDM) rubber was evaluated by limiting oxygen index, and the value of tensile strength and elongation at break. The results show that the introduction of nanosilica into the EPDM/AlHPi blends can not only further improve the flame‐retardant property but also improve the tensile strength and elongation at break significantly, showing a synergistic effect between AlHPi and nanosilica. The flame‐retardant mechanism was further studied by X‐ray diffraction (XRD), thermogravimetric (TG) analysis, differential scanning calorimetry (DSC), and scanning electron microscope (SEM). The results of XRD and TG–DSC indicate that AlHPi will melt along with oxidation at about 337°C, which is helpful to full contact with nanosilica and to enhance the interaction between them; and will further recrystallize above 540°C, which is benefited to enhance the mechanical strength of char layer. The char morphological study by SEM shows that the char layer for the sample with both AlHPi and nanosilica is strong, more uniform and dense, and the scale of the holes in the char layer is smaller compared with the char layer of samples with AlHPi or nanosilica alone. The TG–DSC results show that the sample with both AlHPi and nanosilica has the weakest weight loss rate and heat release rate, compared with the samples with either of them, which is another evidence of the synergistic flame retardant effect between AlHPi and nanosilica. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012 相似文献
6.
Optimization of accelerators on curing characteristics,tensile, and dynamic mechanical properties of (natural rubber)/(recycled ethylene‐propylene‐diene‐monomer) blends 下载免费PDF全文
The migration of sulfur from natural rubber (NR) compound to the ground waste ethylene‐propylene‐diene monomer (EPDM) rubber phase may have caused the cure incompatibility between these two rubbers. Optimization of accelerators had been adopted to overcome the cure incompatibility in NR/(R‐EPDM) blends as well as to get increased curative distribution. In this study, blends of NR and R‐EPDM were prepared. The effect of accelerator type on curing characteristics, tensile properties, and dynamic mechanical properties of 70/30/NR/(R‐EPDM) blend was investigated. Four types of commercial accelerators were selected [ie, N‐tert‐butyl‐2‐benzothiazyl‐sulphonamide , N‐cyclohexyl‐benzothiazyl‐sulfenamide (CBS), tetramethylthiuram disulfide, and 2‐mercaptobenzothiazol]. It was found that the tensile strength of the blends cured in the presence of CBS was relatively higher than the other three accelerators. Scanning electron micrographs of CBS‐cured NR/(R‐EPDM) blends exhibited more roughness and cracking path, indicating that higher energy was required toward the fractured surface. The high crosslinking density observed from the swelling method could be verified from the storage modulus (E′) and damping factor (tan δ) where (tetramethylthiuram disulfide)‐cured NR/(R‐EPDM) blends provided a predominant degree of crosslinking followed by N‐tert‐butyl‐2‐benzothiazyl‐sulphonamide , CBS, and 2‐mercaptobenzothiazol, respectively. J. VINYL ADDIT. TECHNOL., 21:79–88, 2015. © 2014 Society of Plastics Engineers 相似文献
7.
Mercapto‐modified ethylene‐vinyl acetate (EVASH) has been employed as a reactive compatibilizing agent for nitrile‐butadiene rubber (NBR)/ethylene‐propylene‐diene monomer (EPDM) blends vulcanized with a sulfur/2,2′‐dithiobisbenzothiazole (MBTS) single accelerator system and a (sulfur/MBTS/tetramethylthiuram disulfide (TMTD) binary accelerator system. The addition of 5.0 phr EVASH resulted in a significant improvement in the tensile properties of blends vulcanized with the sulfur/MBTS system. In addition to better mechanical performance, these functionalized copolymers gave rise to a more homogeneous morphology and, in some cases, better aging resistance. The compatibilization was not efficient in blends vulcanized with the S/MBTS/TMTD binary system, probably because of the faster vulcanization process occurring in this system. The good performance of these EVASH samples as compatibilizing agents for NBR/EPDM blends is attributed to the higher polarity of these components that is associated with their lower viscosity. Dynamic mechanical analysis also suggested a good interaction between the phases in the presence of EVASH. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 91: 1404–1412, 2004 相似文献
8.
The viscoelastic properties of the blends of chloroprene rubber (CR) with ethylene–propylene–diene monomer rubber (EPDM), polybutadiene rubber (BR), and natural rubber (NR) at different temperature were studied using rubber processing analyzer (RPA). Mooney viscosities of compounds were measured and tight milling and sheeting appearance were observed on a two‐roll mill. The results showed that Mooney viscosities and the elastic modulus of the blends decreased with the increase of the temperature from 60 to 100°C. And the decreasing trends of pure CR, pure NR, and CR/NR blend compounds were more prominent than that of pure EPDM, pure BR, CR/EPDM, and CR/BR blend compounds. For CR/EPDM blend compounds, the decreasing trend became slower with the increase of EPDM ratio in the blend. Compared with pure CR, pure NR and CR/NR blend compounds, pure EPDM, pure BR compounds, and the blend compounds of CR/EPDM and CR/BR showed less sensibility to temperature and they were less sticky to the metal surface of rolls and could be kept in elastic state at higher temperature, easy to be milled up and sheeted. At the same blend ratio and temperature, the property of tight milling of the blends decreased in the sequence of CR/EPDM, CR/BR, and CR/NR. With the increase of EPDM, BR, or NR ratio in CR blends, its property of tight milling was improved. POLYM. COMPOS., 28:667–673, 2007. © 2007 Society of Plastics Engineers 相似文献
9.
Nanocomposite vulcanizates based on ethylene–propylene–diene monomer rubber (EPDM) and organically modified montmorillonite with improved mechanical and barrier properties were prepared via a melt‐mixing process in the presence of maleic anhydride grafted ethylene–propylene–diene monomer rubber (EPDM‐g‐MAH) as an interfacial compatibilizer. The effects of the EPDM Mooney viscosity as the matrix and also the compatibilizer molecular weight and its maleation degree on the developed microstructure were also studied. The annealing of the vulcanized nanocomposites based on a low‐Mooney‐viscosity EPDM matrix and low‐Mooney‐viscosity EPDM‐g‐MAH enhanced the flocculation of the dispersed clay platelets; this implied that the flocculated structure for the clay nanolayers was more thermodynamically preferred in these nanocomposites. This was verified by the decrease in the oxygen permeability of the nanocomposite vulcanizates with increasing annealing time. The tendency of the clay nanosilicate layers to flocculate within the matrix of EPDM was found to be influenced by the clay volume fraction, the maleation degree, and also, the Mooney viscosity of the compatibilizer. Interfacially compatibilized nanocomposites based on high‐molecular‐weight EPDM exhibited a more disordered dispersion of the clay nanolayers, with a broadened relaxation time spectra; this was attributed to the higher shearing subjected to the mix during the melt‐blending process. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011 相似文献
10.
Considering the properties of silicon rubber, ethylene–propylene–diene monomer (EPDM), and cis‐polybutadiene rubber (BR), a blend made by a new method was proposed in this article; this blend had thermal resistance and good mechanical properties. The morphology of the blend was studied by SEM, and it was found that the adhesion between the phases of BR, EPDM, and polysiloxanes (silicon rubber) could be enhanced, and the compatibility and covulcanization were good. The influence of the mass ratio of peroxide and silica on the mechanical properties and thermal resistance of the blend was studied. The results showed that the mechanical properties and thermal resistance of the blend were improved when silicon rubber/BR/EPDM was 20/30/50, dicumyl peroxide/sulfur was 2.5/2.5, and the amount of silica was 80 phr. The integral properties of rubber blend had more advantages than did the three rubbers. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 4462–4467, 2006 相似文献
11.
《Polymer Composites》2017,38(5):870-876
Thermally conductive fillers are usually employed in the preparation of rubber composites to enhance thermal conductivity. In this work, ethylene‐propylene‐diene monomer rubber (EPDM)/expanded graphite (EG) and EPDM/graphite composites with up to 100 phr filler loading were prepared. Compared to EPDM/graphite compounds with the same filler loading, stronger filler network was demonstrated for EPDM/EG compounds. Thermal conductivity and mechanical properties of EPDM/graphite and EPDM/EG composites were compared and systematically investigated as a function of the filler loading. The thermal conductivity of both EPDM/graphite and EPDM/EG composites increased with increasing volume fraction of fillers, and could be well fitted by Geometric Mean Model. The thermal conductivity as high as 0.910 W · m−1 · K−1 was achieved for the EPDM/EG composite with 25.8 vol% EG, which was ∼4.5 times that of unfilled EPDM. Compared to EPDM/graphite composites, EPDM/EG composites exhibited much more significant improvement in thermal conductivity and mechanical properties, which could be well correlated with the better filler‐matrix interfacial compatibility and denser structure in EPDM/EG composites, as revealed in the SEM images of tensile fracture surfaces. POLYM. COMPOS., 38:870–876, 2017. © 2015 Society of Plastics Engineers 相似文献
12.
The effects of blend ratio, crosslinking systems, and fillers on the viscoelastic response of ethylene–propylene–diene monomer (EPDM)/styrene–butadiene rubber (SBR) blends were studied as functions of frequency, temperature, and cure systems. The storage modulus decreased with increasing SBR content. The loss modulus and loss tangent results showed that the EPDM/SBR blend vulcanizate containing 80 wt % EPDM had the highest compatibility. Among the different cure systems studied, the dicumyl peroxide cured blends exhibited the highest storage modulus. The reinforcing fillers were found to reduce the loss tangent peak height. The blend containing 40 wt % EPDM showed partial miscibility. The dispersed EPDM phase suppressed the glass‐transition temperature of the matrix phase. The dynamic mechanical response of rubbery region was dominated by SBR in the EPDM–SBR blend. The morphology of the blend was studied by means of scanning electron microscopy. The blend containing 80 wt % EPDM had small domains of SBR particles dispersed uniformly throughout the EPDM matrix, which helped to toughen the matrix and prevent crack propagation; this led to enhanced blend compatibility. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009 相似文献
13.
The effect of ethylene–propylene–diene monomer rubber (EPDM) as an additive on the abrasion resistance of a thermoplastic polyurethane (TPU) resin was investigated. The mechanical properties and microstructure of the resultant TPU/EPDM composites were evaluated, and the surface morphology of the composites after abrasion testing was examined. The results showed that the addition of EPDM greatly improved both the mechanical properties and abrasion resistance of the TPU resin. A TPU/EPDM composite with 8 wt % EPDM demonstrated the highest tensile strength, the largest elongation at break, and the best overall performance. The abrasion of this composite was 27 mg, whereas that of the pure resin was 73 mg. With the further addition of EPDM, the abrasion resistance of the resultant composites decreased, whereas the viscosity increased. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008 相似文献
14.
Comparative studies of the thermogravimetric analysis and thermo‐oxidative aging of (natural rubber)/(waste ethylene‐propylene‐diene monomer terpolymer) (NR/W‐EPDM) and (natural rubber)/(ethylene‐propylene‐diene monomer terpolymer) (NR/EPDM) blends were carried out. The blends were prepared at five different blend ratios (90/10, 80/20, 70/30, 60/40, and 50/50) on a two‐roll mill. As the pure EPDM or W‐EPDM content in the blends increased, their thermal stability also increased. The thermo‐oxidative aging of these blends was done at 100°C for 48 h. Afterwards, the NR/EPDM blends exhibited better retention of properties than the NR/W‐EPDM blends. Crosslink density measurements of the blends after thermal aging indicated that higher crosslink density was obtained from a higher content of EPDM or W‐EPDM, a result which might be due to the high rate of radical termination leading to crosslinks in the bulk of the polymer. J. VINYL ADDIT. TECHNOL., 20:99–107, 2014. © 2014 Society of Plastics Engineers 相似文献
15.
Effects of peroxide and phenolic cure systems on characteristics of the filled ethylene–propylene–diene monomer rubber (EPDM) 下载免费PDF全文
The effects of three curing systems, peroxide, peroxide–phenolic combination, and phenolic on selected properties of cured carbon black‐filled ethylene–propylene–diene monomer rubber (EPDM) were investigated. The cured rubbers immersed in hot amine solution to evaluate their suitability for seal and gasket industry at elevated temperature and amine environments. These tests were essential for evaluating the durability of the gasket in a gas refinery. The Fourier transform infrared spectroscopy spectrums revealed that the phenolic crosslink was constructed between rubber macromolecules during the curing process. The changing curing system from peroxide to peroxide–phenolic and phenolic increased the glass transition temperature of the filled cured rubbers between 3 and 5 °C. There was not any significant difference between thermogravimetric analysis thermographs of the selected cured rubbers with various cure systems and the residues ranged between 45% and 47%. Unlike of peroxide curing system, a dual phase was observed from scanning electron microscopy micrographs for peroxide–phenolic and phenolic cure systems. The phenolic cure system was not beneficial for rubber curing although, it reduced scorch time of the curing process. For the most studied mechanical properties, phenolic cure system deteriorated mechanical properties for both, aged and unaged cured rubbers. Increasing the amount of diene monomer in EPDM structure was beneficial for phenolic rubber cure system. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46213. 相似文献
16.
The stress–strain (S/S) and the swelling equilibrium behavior in a series of ethylene propylene rubber (EPR) and ethylene propylene diene monomer (EPDM) networks were investigated and the results were employed to evaluate the effects of varying the cure conditions on the crosslinking efficiency in these networks. The S/S curve of completely swollen vulcanizates is in agreement with the predictions of rubber elasticity theory, while that of dry or partially swollen vulcanizates is fully described by the Mooney-Rivlin equation. ? values determined in benzene were found to vary linearly with vr (vr = equilibrium volume fraction of rubber in swollen sample). Crosslinking efficiency, moles of crosslinks produced per moles of crosslinking agent used, ranges from 3.7 in peroxide-cured EPDM (55% wt ethylene and 2.6% unsaturation) to 0.15 in similarly cured EPR (43% ethylene). Efficiency in the latter system improves to 0.6 by addition of a coagent (sulfur) to the cure formula. Crosslinking efficiency in EPDM (55% ethylene) was found to increase in the order: peroxide- > resin- > sulfur-cured. In the EPDM sulfur vulcanizates, changing the terpolymer in the cure formula resulted in significant changes in the crosslinking efficiency. 相似文献
17.
Effect of blend ratio on cure characteristics,tensile properties,thermal and swelling properties of mica‐filled (ethylene‐propylene‐diene monomer)/(recycled ethylene‐propylene‐diene monomer) (EPDM/r‐EPDM) blends 下载免费PDF全文
(Ethylene‐propylene‐diene monomer)/(recycled ethylene‐propylene‐diene monomer) (EPDM/r‐EPDM) blends filled with constant mica loading were compounded at various blends ratios (i.e., 90/10, 80/20, 70/30, 60/40, and 50/50). Results indicated that scorch time decreased with increasing r‐EPDM content, whereas curing time, minimum torque, and maximum torque show the opposite trend. The tensile strength, stress at 100% elongation, and elongation at break value increased with increasing r‐EPDM loading in the blend systems and the optimum properties occurred at 70/30 EPDM/r‐EPDM blends ratio. The thermal stability of EPDM/r‐EPDM blends increased with increasing r‐EPDM content in the blends but the swelling percentage showed the opposite trend with a greater addition of r‐EPDM content in the blends. J. VINYL ADDIT. TECHNOL., 21:1–6, 2015. © 2014 Society of Plastics Engineers 相似文献
18.
Proper management of waste bio‐based materials is an important subject to protect the environment in a sustainable manner. In this study, ethylene‐propylene‐diene monomer (EPDM) composites with different fish scale content were prepared and properties of these composites were investigated. Mechanical tests, gel content, curing, and thermal properties were analyzed. In addition, rheological and morphological analyses were also carried out. It was seen that EPDM rubber and fish scale composite have a good compatibility. The addition of fish scale improved the mechanical properties of the final material. Moreover, an increase in gel content and in swelling ratio was obtained for the composite samples containing fish scale. Moving die rheometer tests are concluded that fish scale has acted like an agent that improves the vulcanization process. Thermal gravimetric analysis result pointed out that the thermal stability of the composite developed is higher than neat EPDM. It was concluded that 40 phr fish scale content gives best results. The kinetic study demonstrated that fish scale is compatible with the matrix and improves the vulcanization process. The results have shown that using the fish scale as a bio‐based filler is a facile and green way to accommodate the bio‐based wastes. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46698. 相似文献
19.
The effects of maleic anhydride modified ethylene–propylene–diene rubber (EPDMMA) and maleic anhydride modified ethylene–vinyl acetate (EVAMA) on the compatibilization of nitrile rubber (NBR)/ethylene–propylene–diene rubber (70:30 w/w) blends vulcanized with a sulfur system were investigated. The presence of EPDMMA and EVAMA resulted in improvements of the tensile properties, whereas no substantial change was detected in the degree of crosslinking. The blend systems were also analyzed with scanning electron microscopy and dynamic mechanical thermal analysis. The presence of EVAMA resulted in a blend with a more homogeneous morphology. The compatibilizing effect of this functional copolymer was also detected with dynamic mechanical analysis. A shift of the glass‐transition temperature of the NBR phase toward lower values was observed. The presence of EPDMMA and EVAMA also increased the thermal stability, as indicated by an improvement in the retention of the mechanical properties after aging in an air‐circulating oven. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 2408–2414, 2003 相似文献
20.
O. P. Grigoryeva A. M. Fainleib A. L. Tolstov O. M. Starostenko E. Lievana J. Karger‐Kocsis 《应用聚合物科学杂志》2005,95(3):659-671
High‐performance thermoplastic elastomers (TPEs), based on recycled high‐density polyethylene (HDPER), olefinic type ethylene–propylene–diene monomer rubber (EPDM), and ground tire rubber (GTR) treated with bitumen, were prepared by using dynamic vulcanization technology, and their structure–property relationships were investigated. It was established that special pretreatment of GTR by bitumen confers outstanding mechanical properties on the resulting TPEs. TPEs, containing GTR pretreated by bitumen, exhibit thermal behavior similar to that of the HDPER/EPDM basic blend in the temperature region up to about 340°C. Rheological measurements showed that bitumen acts as an effective plasticizer for the GTR‐containing TPEs. SEM, DSC, and DMTA results revealed improved adhesion between the particles of GTR treated by bitumen and the surrounding thermoplastic matrix, compared to that of the untreated GTR particles. It was concluded that bitumen acts as an effective devulcanizing agent in the GTR treatment stage. In the following steps of TPE production, bitumen acts simultaneously as a curing agent for the rubber components (EPDM/GTR) and as a compatibilizer for the blend components. GTR‐containing TPEs, prepared by extrusion technology, were reprocessed (by passing through the extruder six times) without any observable changes in their tensile properties, thermal stability, and melt viscosity. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 95: 659–671, 2005 相似文献