首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
The present contribution provides a new approach to the design of energy momentum consistent integration schemes in the field of nonlinear thermo‐elastodynamics. The method is inspired by the structure of polyconvex energy density functions and benefits from a tensor cross product that greatly simplifies the algebra. Furthermore, a temperature‐based weak form is used, which facilitates the design of a structure‐preserving time‐stepping scheme for coupled thermoelastic problems. This approach is motivated by the general equation for nonequilibrium reversible‐irreversible coupling (GENERIC) framework for open systems. In contrast to complex projection‐based discrete derivatives, a new form of an algorithmic stress formula is proposed. The spatial discretization relies on finite element interpolations for the displacements and the temperature. The superior performance of the proposed formulation is shown within representative quasi‐static and fully transient numerical examples.  相似文献   

2.
In the present paper one‐step implicit integration algorithms for non‐linear elastodynamics are developed. The discretization process rests on Galerkin methods in space and time. In particular, the continuous Galerkin method applied to the Hamiltonian formulation of semidiscrete non‐linear elastodynamics lies at the heart of the time‐stepping schemes. Algorithmic conservation of energy and angular momentum are shown to be closely related to quadrature formulas that are required for the calculation of time integrals. We newly introduce the ‘assumed strain method in time’ which enables the design of energy–momentum conserving schemes and which can be interpreted as temporal counterpart of the well‐established assumed strain method for finite elements in space. The numerical examples deal with quasi‐rigid motion as well as large‐strain motion. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

3.
A multi‐scale cohesive numerical framework is proposed to simulate the failure of heterogeneous adhesively bonded systems. This multi‐scale scheme is based on Hill's variational principle of energy equivalence between the higher and lower level scales. It provides an easy way to obtain accurate homogenized macroscopic properties while capturing the physics of failure processes at the micro‐scale in sufficient detail. We use an isotropic rate‐dependent damage model to mimic the failure response of the constituents of heterogeneous adhesives. The finite element method is used to solve the equilibrium equation at each scale. A nested iterative scheme inspired by the return mapping algorithm used in computational inelasticity is implemented. We propose a computationally attractive technique to couple the macro‐ and micro‐scales for rate‐dependent constitutive laws. We introduce an adhesive patch test to study the numerical performance, including spatial and temporal convergence of the multi‐scale scheme. We compare the solution of the multi‐scale cohesive scheme with a direct numerical simulation. Finally, we solve mode I and mode II fracture problems to demonstrate failure at the macro‐scale. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

4.
A computational homogenization scheme is developed to model heterogeneous hyperelastic materials undergoing large deformations. The homogenization scheme is based on a so‐called computational continua formulation in which the macro‐scale model is assumed to consist of disjoint unit cells. This formulation adds no higher‐order boundary conditions and extra degrees of freedom to the problem. A computational procedure is presented to calculate the macroscopic quantities from the solution of the representative volume element boundary value problem. The proposed homogenization scheme is verified against a direct numerical simulation. It is also shown that the computational cost of the proposed model is lower than that of standard homogenization schemes. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

5.
A three‐dimensional surface adhesive contact formulation is proposed to simulate macroscale adhesive contact interaction characterized by the van der Waals interaction between arbitrarily shaped deformable continua under finite deformation. The proposed adhesive contact formulation uses a double‐layer surface integral to replace the conventional double volume integration to compute the adhesive contact force vector. Considering nonlinear finite deformation, we have derived the surface stress tensor and the corresponding tangent stiffness matrix in a Galerkin weak formulation. With the surface stress formulation, the adhesive contact problems are solved in the framework of nonlinear continuum mechanics by using the standard Lagrange finite element method. Surface stress tensors are formulated for both interacting bodies. Numerical examples show that the proposed surface contact algorithm is accurate, efficient, and reliable for three‐dimensional adhesive contact problems of large deformations for both quasi‐static and dynamic simulations. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

6.
This paper proposes an energy‐based measure for the evaluation of the local truncation error of two‐level one‐step integration schemes. The measure applies to multiple degree of freedom systems and does not necessarily require modal reduction to a scalar model; it naturally handles the structural damping and external forcing terms that are generally and mistakenly neglected in error analyses, and it segregates the error associated with the free and forced response components of the problem. To illustrate the approach, two examples associated with the application of the trapezoidal scheme and of a high‐order scheme proposed in the literature are analyzed. The latter reveals the shortcomings of the standard approach that is based on the undamped/unforced linear oscillator and therefore highlights the need for the proposed framework. Indeed, the scheme order of accuracy is below expectation when structural damping or external forcing is considered, in the numerically dissipative setting. Developments on the basis of the time discontinuous Galerkin (TDG) method are then proposed to recover the scheme high‐order accuracy. Additionally, they show the similarity that exists between schemes related to the TDG method and the ones obtained by integration by parts of the equation of motion. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

7.
In the present work the mortar method is applied to planar large deformation contact problems without friction. In particular, the proposed form of the mortar contact constraints is invariant under translations and rotations. These invariance properties lay the foundation for the design of energy‐momentum time‐stepping schemes for contact–impact problems. The iterative solution procedure is embedded into an active set algorithm. Lagrange multipliers are used to enforce the mortar contact constraints. The solution of generalized saddle point systems is circumvented by applying the discrete null space method. Numerical examples demonstrate the robustness and enhanced numerical stability of the newly developed energy‐momentum scheme. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

8.
9.
We are concerned with the numerical simulation of wave motion in arbitrarily heterogeneous, elastic, perfectly‐matched‐layer‐(PML)‐truncated media. We extend in three dimensions a recently developed two‐dimensional formulation, by treating the PML via an unsplit‐field, but mixed‐field, displacement‐stress formulation, which is then coupled to a standard displacement‐only formulation for the interior domain, thus leading to a computationally cost‐efficient hybrid scheme. The hybrid treatment leads to, at most, third‐order in time semi‐discrete forms. The formulation is flexible enough to accommodate the standard PML, as well as the multi‐axial PML. We discuss several time‐marching schemes, which can be used à la carte, depending on the application: (a) an extended Newmark scheme for third‐order in time, either unsymmetric or fully symmetric semi‐discrete forms; (b) a standard implicit Newmark for the second‐order, unsymmetric semi‐discrete forms; and (c) an explicit Runge–Kutta scheme for a first‐order in time unsymmetric system. The latter is well‐suited for large‐scale problems on parallel architectures, while the second‐order treatment is particularly attractive for ready incorporation in existing codes written originally for finite domains. We compare the schemes and report numerical results demonstrating stability and efficacy of the proposed formulations. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

10.
In this paper, a mixed variational formulation for the development of energy–momentum consistent (EMC) time‐stepping schemes is proposed. The approach accommodates mixed finite elements based on a Hu–Washizu‐type variational formulation in terms of displacements, Green–Lagrangian strains, and conjugated stresses. The proposed discretization in time of the mixed variational formulation under consideration yields an EMC scheme in a natural way. The newly developed methodology is applied to a high‐performance mixed shell finite element. The previously observed robustness of the mixed finite element formulation in equilibrium iterations extends to the transient regime because of the EMC discretization in time. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

11.
With the postulation of the principle of virtual action, we propose, in this paper, a variational framework for describing the dynamics of finite dimensional mechanical systems, which contain frictional contact interactions. Together with the contact and impact laws formulated as normal cone inclusions, the principle of virtual action directly leads to the measure differential inclusions commonly used in the dynamics of nonsmooth mechanical systems. The discretization of the principle of virtual action in its strong and weak variational form by local finite elements in time provides a structured way to derive various time‐stepping schemes. The constitutive laws for the impulsive and nonimpulsive contact forces, ie, the contact and impact laws, are treated on velocity‐level by using a discrete contact law for the percussion increments in the sense of Moreau. Using linear shape functions and different quadrature rules, we obtain three different stepping schemes. Besides the well‐established Moreau time‐stepping scheme, we can present two alternative integrators referred to as symmetric and variational Moreau‐type stepping schemes. A suitable benchmark example shows the superiority of the newly proposed integrators in terms of energy conservation properties, accuracy, and convergence.  相似文献   

12.
This paper focuses on the application of NURBS‐based isogeometric analysis to Coulomb frictional contact problems between deformable bodies, in the context of large deformations. A mortar‐based approach is presented to treat the contact constraints, whereby the discretization of the continuum is performed with arbitrary order NURBS, as well as C0‐continuous Lagrange polynomial elements for comparison purposes. The numerical examples show that the proposed contact formulation in conjunction with the NURBS discretization delivers accurate and robust predictions. Results of lower quality are obtained from the Lagrange discretization, as well as from a different contact formulation based on the enforcement of the contact constraints at every integration point on the contact surface. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

13.
This paper deals with the development of computational schemes for the dynamic analysis of non‐linear elastic systems. The focus of the investigation is on the derivation of unconditionally stable time‐integration schemes presenting high‐frequency numerical dissipation for these types of problem. At first, schemes based on Galerkin and time‐discontinuous Galerkin approximations applied to the equations of motion written in the symmetric hyperbolic form are proposed. Though useful, these schemes require casting the equations of motion in the symmetric hyperbolic form, which is not always possible. Furthermore, this approaches to unacceptably high computational costs. Next, unconditionally stable schemes are proposed that do not rely on the symmetric hyperbolic form. Both energy‐preserving and energy‐decaying schemes are derived. Numerical examples are presented to demonstrate the accuracy and efficiency of the proposed schemes. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

14.
Multi‐scale problems are often solved by decomposing the problem domain into multiple subdomains, solving them independently using different levels of spatial and temporal refinement, and coupling the subdomain solutions back to obtain the global solution. Most commonly, finite elements are used for spatial discretization, and finite difference time stepping is used for time integration. Given a finite element mesh for the global problem domain, the number of possible decompositions into subdomains and the possible choices for associated time steps is exponentially large, and the computational costs associated with different decompositions can vary by orders of magnitude. The problem of finding an optimal decomposition and the associated time discretization that minimizes computational costs while maintaining accuracy is nontrivial. Existing mesh partitioning tools, such as METIS, overlook the constraints posed by multi‐scale methods and lead to suboptimal partitions with a high performance penalty. We present a multi‐level mesh partitioning approach that exploits domain‐specific knowledge of multi‐scale methods to produce nearly optimal mesh partitions and associated time steps automatically. Results show that for multi‐scale problems, our approach produces decompositions that outperform those produced by state‐of‐the‐art partitioners like METIS and even those that are manually constructed by domain experts. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

15.
An alternative spatial semi‐discretization of dynamic contact based on a modified Hamilton's principle is proposed. The modified Hamilton's principle uses displacement, velocity and momentum as variables, which allows their independent spatial discretization. Along with a local static condensation for velocity and momentum, it leads to an approach with a hybrid‐mixed consistent mass matrix. An attractive feature of such a formulation is the possibility to construct hybrid singular mass matrices with zero components at those nodes where contact is collocated. This improves numerical stability of the semi‐discrete problem: the differential index of the underlying differential‐algebraic system is reduced from 3 to 1, and spurious oscillations in the contact pressure, which are commonly reported for formulations with Lagrange multipliers, are significantly reduced. Results of numerical experiments for truss and Timoshenko beam elements are discussed. In addition, the properties of the novel discretization scheme for an unconstrained dynamic problem are assessed by a dispersion analysis.Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

16.
This paper is concerned with stochastic boundary value problems (SBVPs) whose formulation involves inequality constraints. A class of stochastic variational inequalities (SVIs) is defined, which is well adapted to characterize the solution of specified inequality‐constrained SBVPs. A methodology for solving such SVIs is proposed, which involves their discretization by projection onto polynomial chaos and collocation of the inequality constraints, followed by the solution of a finite‐dimensional constrained optimization problem. Simulation studies in contact and elastoplasticity are provided to demonstrate the proposed framework. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

17.
This paper presents a bubble‐enhanced smoothed finite element formulation for the analysis of volume‐constrained problems in two‐dimensional linear elasticity. The new formulation is derived based on the variational multi‐scale approach in which unequal order displacement‐pressure pairs are used for the mixed finite element approximation and hierarchical bubble function is selected for the fine‐scale displacement approximation. An area‐weighted averaging scheme is employed for the two‐scale smoothed strain calculation under the framework of edge‐based smoothed FEM. The smoothed fine‐scale solution is shown to naturally contain the stress field jump of the smoothed coarse‐scale solution across the boundary of edge‐based smoothing domain and thus provides the possibility to stabilize the global solution for volume‐constrained problems. A global monolithic solution strategy is employed, and the fine‐scale solution is solved without the consideration of approximating the strong form of the fine‐scale equation. Several numerical examples are analyzed to demonstrate the accuracy of the present formulation. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

18.
This paper presents the formulation of numerical algorithms for the solution of the closest‐point projection equations that appear in typical implementations of return mapping algorithms in elastoplasticity. The main motivation behind this work is to avoid the poor global convergence properties of a straight application of a Newton scheme in the solution of these equations, the so‐called Newton‐CPPM. The mathematical structure behind the closest‐point projection equations identified in Part I of this work delineates clearly different strategies for the successful solution of these equations. In particular, primal and dual closest‐point projection algorithms are proposed, in non‐augmented and augmented Lagrangian versions for the imposition of the consistency condition. The primal algorithms involve a direct solution of the original closest‐point projection equations, whereas the dual schemes involve a two‐level structure by which the original system of equations is staggered, with the imposition of the consistency condition driving alone the iterative process. Newton schemes in combination with appropriate line search strategies are considered, resulting in the desired asymptotically quadratic local rate of convergence and the sought global convergence character of the iterative schemes. These properties, together with the computational performance of the different schemes, are evaluated through representative numerical examples involving different models of finite‐strain plasticity. In particular, the avoidance of the large regions of no convergence in the trial state observed in the standard Newton‐CPPM is clearly illustrated. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

19.
A family of fourth‐order coupled implicit–explicit time schemes is presented as a special case of fourth‐order coupled implicit schemes for linear wave equations. The domain of interest is decomposed into several regions where different fourth‐order time discretizations are used, chosen among a family of implicit or explicit fourth‐order schemes. The coupling is based on a Lagrangian formulation on the boundaries between the several non‐conforming meshes of the regions. A global discrete energy is shown to be preserved and leads to global fourth‐order consistency in time. Numerical results in 1D and 2D for the acoustic and elastodynamics equations illustrate the good behavior of the schemes and their potential for the simulation of realistic highly heterogeneous media or strongly refined geometries, for which using everywhere an explicit scheme can be extremely penalizing. Accuracy up to fourth order reduces the numerical dispersion inherent to implicit methods used with a large time step and makes this family of schemes attractive compared with second‐order accurate methods. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

20.
In the present paper one‐step implicit integration algorithms for the N‐body problem are developed. The time‐stepping schemes are based on a Petrov–Galerkin finite element method applied to the Hamiltonian formulation of the N‐body problem. The approach furnishes algorithmic energy conservation in a natural way. The proposed time finite element method facilitates a systematic implementation of a family of time‐stepping schemes. A particular algorithm is specified by the associated quadrature rule employed for the evaluation of time integrals. The influence of various standard as well as non‐standard quadrature formulas on algorithmic energy conservation and conservation of angular momentum is examined in detail for linear and quadratic time elements. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号