首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper investigates the problem of cooperative output regulation of heterogeneous linear multi-agent systems. A passive framework is presented for the stabilisation analysis of cooperative output regulation, which can overcome the difficulty caused by the fact that the global dynamics of heterogeneous multi-agent systems depends on the global communication structure. An adaptive distributed observer is proposed to estimate the state of the exosystem, and the proposed distributed observer is independent of any global information of the communication graph. Based on passivity design and adaptive distributed observer, both a distributed state feedback and a distributed output feedback protocol are designed for output synchronisation of heterogeneous multi-agent systems. The gain matrices of the distributed protocols and observers are obtained by a Riccati equation design approach. Furthermore, sufficient local conditions for solving the problem of cooperative output regulation of heterogeneous multi-agent systems are presented. Finally, numerical simulation results are given to illustrate the effectiveness of the proposed distributed control schemes.  相似文献   

2.
This paper addresses the cooperative output regulation problem of multiagent systems with fixed and switching topologies. Each agent is a heterogeneous linear system, and the output of the exosystem can be available to only a subset of agents. For the agents that can directly access the exosystem, a common observer based on an event‐triggered strategy is constructed to estimate the exogenous signal for feedback control design. For the rest of the agents, estimators based on an event‐triggered mechanism to acquire the estimation value of the exogenous signal are designed under some essential assumptions. A decentralized event‐triggered formulation is considered first by applying a Lyapunov function for a fixed topology. Furthermore, a topology‐dependent triggering condition and the average dwell‐time switching law are deduced simultaneously by using multiple Lyapunov functions for switching topologies. Under communication constraints, we propose observer‐based and estimator‐based feedback controllers to solve the cooperative output regulation problem using available local information among agents. Two examples are finally provided to verify the effectiveness of the proposed theoretical results.  相似文献   

3.
This paper studies regulated state synchronization for continuous‐time homogeneous multiagent systems with weakly unstable agents where the reference trajectory is given by a so‐called exosystem. The agents share part of their state over a communication network. We assume that the communication topology is completely unknown and directed. An algebraic Riccati equation–based low‐gain adaptive nonlinear dynamic protocol design is presented to achieve the regulated state synchronizations. Utilizing the adaptive control, our nonlinear dynamic protocol is universal and does not depend on any information about the communication topology or the number of agents.  相似文献   

4.
In this paper, we study robust cooperative output regulation problems for a directed network of Lur'e systems that consist of a nominal linear dynamics with an unknown static nonlinearity around it through negative feedback. We assume that the linear part of each agent is identical, but the nonlinearities are allowed to be different for distinct agents. In this sense, the network is heterogeneous. As is common in the context of Lur'e systems, the unknown nonlinearities are assumed to be sector bounded within one given sector. The interconnection graph among these agents is assumed to contain a directed spanning tree. Similar to classical output regulation problems, there is a virtual exosystem generating a reference signal in which all the agents are required to track cooperatively. Our designed distributed dynamic state/output feedback protocol makes a copy of the reference signal at each agent asymptotically, and then the robust cooperative output regulation problem becomes a robust tracking problem that can be handled by each agent via local information. It turns out that our cooperative protocols are fully distributed. Sufficient conditions on the existence of output synchronization protocols are given along with some discussions on these conditions. Finally, two simulation examples illustrate our design. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

5.
针对异构多智能体系统有限时间输出调节问题,本文提出了分布式有限时间状态观测器控制算法和相应的输出反馈控制策略.应用图论、Lyapunov稳定性理论证明了所设计的观测器能够在有限时间内估计出外部系统状态,同时可以保证系统在有限时间内的稳定性,很好的解决了当部分跟随者无法获取外部命令时的有限时间输出调节问题.最后,通过MATLAB数值仿真验证了该协议的有效性和正确性,仿真结果表明系统除了在有限时间内获得更快的收敛速度外,还具有良好的暂态性能.  相似文献   

6.
This paper studies the synchronization problem for multiagent systems with identical continuous‐ or discrete‐time agents with unknown nonuniform constant input delays. The agents are connected via full‐ or partial‐state coupling. The agents are assumed to be asymptotically null controllable, ie, all eigenvalues are in the closed left‐half complex plane for continuous‐time agents or in the closed unit disc for discrete‐time agents. We derive an upper bound for the input delay tolerance, which explicitly depends on the agent dynamics. Moreover, for any unknown delay satisfying this upper bound, a low‐gain–based protocol design methodology is proposed without relying on exact knowledge of the network topology such that synchronization is achieved among agents for any network graph in a given set.  相似文献   

7.
This article investigates the consensus problem for positive multiagent systems via an observer‐based dynamic output‐feedback protocol. The dynamics of the agents are modeled by linear positive systems and the communication topology of the agents is expressed by an undirected connected graph. For the consensus problem, the nominal case is studied under the semidefinite programming framework while the robust and nonfragile cases are investigated under the linear programming framework. It is required that the distributed state‐feedback controller and observer gains should be structured to preserve the positivity of multiagent systems. Necessary and/or sufficient conditions for the analysis of consensus are obtained by using positive systems theory and graph theory. For the nominal case, necessary and sufficient conditions for the codesign of state‐feedback controller and observer of consensus are derived in terms of matrix inequalities. Sufficient conditions for the robust and nonfragile consensus designs are derived and the codesign of state‐feedback controller and observer can be obtained in terms of solving a set of linear programs. Numerical simulations are provided to show the effectiveness and applicability of the theoretical results and algorithms.  相似文献   

8.
分布式无源性系统的同步控制与分析   总被引:1,自引:0,他引:1  
陈刚  余名 《自动化学报》2012,38(5):882-888
针对由多个无源性系统所构成的分布式有向网络系统,基于 Lyapunov方法提出了设计与分析同步控制协议的新框架. 其设计与分析方法适用于一类更广泛的有向拓扑网络,克服了已有理论框架下拓扑分析的局限性. 该方法也适用于带有通信时延及控制输入饱和的系统. 在新的理论框架下,分析了网络化拉格朗日系统的同步控制问题,并对网络化多机械手系统的同步控制进行了仿真研究. 仿真结果表明了算法的有效性.  相似文献   

9.
The problem of cooperative synchronization of nonlinear multi‐agent systems with time delays is investigated in this paper. Compared with the existing works about synchronization (or consensus) of multi‐agent systems, the method in this paper provides a more general framework by considering nonlinear multi‐agent systems with time delays and impulsive disturbances. The model in this paper is sufficiently general to include a class of delayed chaotic systems. Based on the Lyapunov stability theory and algebraic graph theory, sufficient conditions are presented to guarantee the cooperative exponential synchronization for these multi‐agent delayed nonlinear systems. These conditions are expressed in terms of linear matrix inequalities, which can easily be checked by existing software tools. It is seen that the Lyapunov functions must be constructed based on the graph topology to prove synchronization. The well‐known master–slave (drive‐response) synchronization of two chaotic delayed systems is a special case of this paper, and therefore, the results in this paper are also useful for practical applications in secure communication. Simulation results verify the effectiveness of the proposed synchronization control algorithm. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

10.
This paper characterizes a unified consensus region for multi‐agent systems, where there exist fixed physical connections with information exchange. The notions of synchronization region in complex networks and consensus region in multi‐agent systems can be explained under this unified framework. The effect of the coupling terms on the consensus regions in different situations is analyzed specifically. Furthermore, necessary and sufficient conditions for consensus of agents under both distributed state feedback and observer‐based output feedback control are established. On the basis of a parameter‐dependent Lyapunov function, a 2‐step controller design procedure is proposed, which can reduce the conservativeness to some extent in comparison with the conventional direct Lyapunov method. In addition, for the case with disturbance, the robustness of the system is investigated. Finally, some numerical examples are presented to illustrate the theoretical results.  相似文献   

11.
This paper addresses the problem of how to achieve superior performance by adaptively and distributively adjusting control gains of a cooperative control system. It is shown that according to distributed observations of changing network topologies and on the basis of online estimation of network connectivity, cooperative controls with adaptive gains can be synthesized to making the time derivative of the cooperative control Lyapunov function more negative and hence to improve stability and convergence of the overall system. For undirected networks, the proposed adaptive design reduces to improving the Fiedler eigenvalue (algebraic connectivity) as well as other eigenvalues. On the other hand, connectivity of a directed network is characterized by the property of the first left eigenvector(s) associated with its dominant eigenvalue, and in this paper, a distributed high‐gain observer design is proposed for each of the networked systems to utilize the same communication network among the systems. It is shown that even in the presence of transmission delays, the distributed estimators converge fast to the first left eigenvector(s) of the network. In addition, the expected consensus value(s) of the overall cooperative system under control is also estimated in a distributive manner. Rigorous analysis is carried out on estimation convergence and observer gain selection. It is shown that the proposed estimation and adaptive control designs are fully distributed, have guaranteed performance for all possible varying topologies as long as their dwelling times are bounded away from zero, and are robust with respect to excessively fast topology changes. Simulation results are included to demonstrate effectiveness of the proposed estimation and control schemes. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

12.
In this paper, a solution of the formation-tracking problem is provided for a network that contains nonlinear agents with completely unknown dynamics and working under unknown disturbances. By the combination of a cooperative observer and an adaptive model-free controller, the requirement of inter-agent relative position information in the network is eliminated. Here, a cooperative observer is designed to estimate the time-varying reference trajectory and the time-varying parameters of the desired formation topology at each agent in the network. The stability of the proposed cooperative observer is analysed using Lyapunov analysis. Utilising the cooperative observer, the formation-tracking problem in the network of dynamic agents is transformed to a tracking problem in a single agent system. Moreover, an adaptive model-free control policy is applied to each agent for providing the tracking objective. Utilising the algebraic connectivity originating from graph theory, this model-free control algorithm is formulated to scale-up for a network of multi-agents. The proposed decentralised controller includes two model-free adaptive laws for online estimating of the completely unknown dynamics at each agent in the network. The application of the proposed solution is simulated for a network of four quadrotors with unknown internal dynamics and unknown external disturbances.  相似文献   

13.
This paper addresses the problem of cooperative path‐following of networked autonomous surface vessels with discrete‐time periodic communications. The objective is to steer a group of autonomous vehicles along given spatial paths, while holding a desired inter‐vehicle formation pattern. For a given class of marine vessels, we show how Lyapunov‐based techniques, graph theory, and results from networked control systems can be brought together to yield a decentralized control structure where the dynamics of the cooperating vessels and the constraints imposed by the topology of the inter‐vehicle communication network are explicitly taken into account. Cooperation is achieved by adjusting the speed of each vessel along its path according to information exchanged periodically on the positions of a subset of the other vessels, as determined by the communications topology adopted. The closed‐loop system that is obtained by putting together the path‐following and cooperation strategies takes an interconnected feedback form where both systems are input‐to‐state stable with respect to the outputs of each other. Using a small‐gain theorem, stability and convergence of the overall system are guaranteed for adequate choices of the controller gains. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

14.
In this paper, the leader‐following consensus problem of uncertain high‐order nonlinear multi‐agent systems on directed graph with a fixed topology is studied, where it is assumed that the relative states of a follower and its neighbors are immeasurable and only the relative outputs are available. Nonlinear adaptive observers are firstly proposed for each follower to estimate the states of it and its neighbors, and an observer‐based distributed adaptive control scheme is constructed to guarantee that all followers asymptotically synchronize to a leader with tracking errors being semi‐globally uniform ultimate bounded. On the basis of algebraic graph theory and Lyapunov theory, the closed‐loop system stability analysis is conducted. Finally, numerical simulations are presented to illustrate the effectiveness and potential of the proposed new design techniques. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

15.
In this paper, we study the cooperative robust output regulation problem for discrete‐time linear multi‐agent systems with both communication and input delays by a distributed internal model approach. We first introduce the distributed internal model for discrete‐time multi‐agent systems with both communication and input delays. Then, we define the so‐called auxiliary system and auxiliary augmented system. Finally, we solve our problem by showing, under some standard assumptions, that if a distributed state feedback control or a distributed output feedback control solves the robust output regulation problem of the auxiliary system, then the same control law solves the cooperative robust output regulation problem of the original multi‐agent systems.  相似文献   

16.
This paper addresses the adaptive synchronization control problem of networked robot systems characterized by the Lagrangian function, where exact dynamic models are unknown and velocity measurements are unavailable. A class of distributed observers, comprised of multiple dynamic variables and static variables, are established based on no a priori restriction on the boundness of the observer states. The observer is compatible for different control schemes with or without structure uncertainties. Using the estimated states given by the observer, adaptive distributed control input is developed, and then, closed‐loop dynamic models for filtered vectors are established. It is proven that our proposed control scheme permits global exact state estimation and global asymptotic synchronization while compensating for structure uncertainties. Simulations are provided to demonstrate the effectiveness of the results.  相似文献   

17.
This paper studies output synchronization problem, formation problem, and regulated synchronization problem for a heterogenous network of discrete‐time introspective right‐invertible agents. We first propose a decentralized control scheme to solve the output synchronization problem for a set of communication topologies. Moreover, if the synchronization trajectories are assumed to be bounded, a universal controller can be constructed for all communication topologies, which contain a directed spanning tree. The design can be applied to solve the formation problem with arbitrary formation vectors. In the regulated synchronization problem, we assume only the root receives information from exosystem. We then design a decentralized controller to solve the problem for a set of communication topologies. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

18.
This paper investigates a synchronization approach to trajectory tracking of networked robotic systems while maintaining time-varying formations. The objective is to control networked robots to track a desired trajectory while synchronizing their behaviors. Combining trajectory tracking and synchronization algorithms, the developed approach uses a cross-coupling technical to create interconnections for mutual synchronization of robots. The main objective of distributed approach is to generate an emerging behavior using only local information interactions. First, a distributed scheme is developed to achieve the networked robots synchronization on undirected graph. Then, the leaderless synchronized tracking problem in the case when only position measurements are available, will be presented. For both cases: In the presence of the velocity feedback or in its absence, the controller, designed by incorporating the cross-coupling technical into a sliding mode control architecture, successfully guarantees asymptotic convergence to zero of both position tracking and synchronization errors simultaneously. The Lyapunov-based approach has been used to establish the multi-robot systems asymptotic stability. A real-time software simulator is developed to visualize the synchronized behaviors. Based on LabVIEW integrated development environment (IDE), a developed human-machine-interface (HMI) allows its user to control, in real time, the networked robots. Simulation and experimental results are provided to demonstrate performances of the proposed control schemes.  相似文献   

19.
This paper studies state synchronization of homogeneous multiagent systems (MAS) via a static protocol with partial‐state coupling in the presence of a time‐varying communication topology, which includes general time‐varying graphs as well as switching graphs. If the agents are squared‐down passive or squared‐down passifiable (via static output feedback or static input feedforward), then a static protocol can be designed for balanced, time‐varying graphs. Moreover, this static protocol works for arbitrary switching directed graphs if the agents are squared‐down minimum phase with relative degree one. The static protocol is designed for each agent such that state synchronization is achieved without requiring exact knowledge about the time‐varying network.  相似文献   

20.
This paper investigates the semiglobal synchronization problem for a group of agents with input saturation under directed interaction topology, where each agent is modeled as a generic linear system rather than the single‐integrator or double‐integrator dynamics. The main result is the construction of a feedback coupling gain that achieves semiglobal synchronization if all the agents have identically saturated linear dynamics, which can be of any order. It is shown that the coupling gain obtained via parametric Lyapunov equations can semiglobally synchronize any directed network provided that the interaction topology has a directed spanning tree. Furthermore, due to the use of parametric Lyapunov equations, a convergence rate is analytically obtained. Finally, a simulation example is provided to demonstrate the effectiveness and advantages of our theoretical findings. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号