首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Graft copolymer (PVDF‐g‐PNIPAAm) having poly(vinylidene fluoride) (PVDF) backbones and poly(N‐isopropylacrylamide) (PNIPAAm) side chains was synthesized via radical copolymerization and its hollow fiber membrane was fabricated from dry–wet spinning technique with N, N‐dimethylformamide as the solvent and poly(ethylene glycol) (10,000) as the additive. The effects of spinning condition (take‐up speeds) on the structures and performances of resulting fiber membranes were systematically considered. The structures and performances of fiber membranes were characterized by element analysis, X‐ray photoelectron spectroscopy, water contact angle measurement, scanning electron microscope, atom force microscope, and filtration experiments. The results indicate that PNIPAAm side chains tended to enrich on the membrane surface and pore surface and especially tended to aggregate on the inner surface due to the effect of bore fluid. The hollow fiber membrane exhibits an obvious temperature‐sensitive property. The pure water flux increases remarkably around 32°C, while the retention of albumin egg decreases accordingly, when the permeation temperature rises from 20 to 45°C. As the take‐up speed increases, both the inner and outer diameters of fiber membranes decrease. A higher take‐up speed favors higher pure water permeation flux, which allows larger molecules to permeate through the fiber membrane. POLYM. ENG. SCI. 2013. © 2012 Society of Plastics Engineers  相似文献   

2.
The modified poly(vinylidene fluoride) (PVDF) hollow fiber composite membranes reinforced by hydroxyapatite (HAP) nanocrystal whiskers were fabricated with wet‐spinning method. The PVDF/HAP/N‐methyl‐2‐pyrrolidone dope solutions experienced delayed demixing mechanism, and the precipitation rate slightly increased as the HAP whisker content increased. The cross sections of PVDF‐HAP and neat PVDF hollow fiber composite membranes were composed of five distinct layers: two skin layers, two finger‐like sublayers, and a sponge‐like layer. The Young's modulus of and tensile strength of the PVDF‐HAP hollow fiber membranes gradually increased with the addition of nano‐HAP whiskers. The elongation ratio was also improved, which was different from the polymeric membranes modified by other inorganic nanofillers. The permeation flux of the PVDF‐HAP hollow fiber membranes slightly increased with the increase of HAP content in the composite membranes as its hydrophilicity was improved. The crystallization behaviors of PVDF in the composite membranes were also investigated. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

3.
Polyethersulfone (PES) hollow fiber membranes were fabricated via the dry‐wet phase inversion spinning technique, aiming to produce an asymmetric, micro porous ultrafiltration hollow‐fiber specifically for hemodialysis membrane. The objective of this study is to investigate the effect of spinning conditions on the morphological and permeation properties of the fabricated membrane. Among the parameters that were studied in this work are air gap distance, dope extrusion rate, bore fluid flow rate, and the take‐up speed. The contact angle was measured to determine the hydrophilicity of the fibers. Membrane with sufficient hydrophilicity properties is desired for hemodialysis application to avoid fouling and increase its biocompatibility. The influences of the hollow fiber's morphology (i.e., diameter and wall thickness) on the performance of the membranes were evaluated by pure water flux and BSA rejection. The experimental results showed that the dope extrusion rate to bore fluid flow rate ratio should be maintained at 1:1 ratio to produce a perfectly rounded asymmetric hollow fiber membrane. Moreover, the flux of the hollow fiber spun at higher air gap distance had better flux than the one spun at lower air gap distance. Furthermore, spinning asymmetric hollow fiber membranes at high air gap distance helps to produce a thin and porous skin layer, leading to a better flux but a relatively low percentage of rejection for BSA separation. Findings from this study would serve as primary data which will be a useful guide for fabricating a high performance hemodialysis hollow fiber membrane. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43633.  相似文献   

4.
A high‐quality, heterogeneous hollow‐fiber affinity membranes modified with mercapto was prepared through phase separation with blends of a chelating resin and polysulfone as membrane materials, poly(ethylene glycol) as an additive, N,N‐dimethylacetamide as a solvent, and water as an extraction solvent. The effects of the blending ratio and chelating resin grain size on the structure of the hollow‐fiber affinity membrane were studied. The effects of the composition of the spin‐cast solution and process parameters of dry–wet spinning on the structure of the heterogeneous hollow‐fiber affinity membrane were investigated. The pore size, porosity, and water flux of the hollow‐fiber affinity membrane all decreased with an increase in the additive content, bore liquid, and dry‐spinning distance. With an increase in the extrusion volume outflow, the external diameter, wall thickness, and porosity of the hollow‐fiber affinity membrane all increased, but the pore size and water flux of the hollow‐fiber affinity membrane decreased. It was also found that the effects of the internal coagulant composition and external coagulant composition on the structure of the heterogeneous hollow‐fiber affinity membrane were different. The experimental results showed that thermal drawing could increase the mechanical properties of the heterogeneous hollow‐fiber affinity membrane and decrease the pore size, porosity, and water flux of the heterogeneous hollow‐fiber affinity membrane, and the thermal treatment could increase the homogeneity and stability of the structure of the heterogeneous hollow‐fiber affinity membrane. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

5.
In our recent study, pH‐sensitive polyethersulfone (PES) hollow fiber membranes were prepared by blending poly (acrylonitrile‐co‐acrylic acid) (PANAA), and the electroviscous effect had great effect on the water flux change. While the question remains: is the water flux change caused by the electroviscous effect for all the membranes with different pore sizes? Herein, pH‐sensitive hollow fiber membranes with different pore sizes were prepared. The pore size and the theoretic water flux were calculated through the ultrafiltration of polyethylene glycol (PEG) solution. Comparing the calculated fluxes and the experimental ones, we found that the water flux change was mainly caused by the pore size change at the pH value larger than pKa, while that was caused by both the pore size change and the electroviscous effect when pH value was smaller than the pKa, and the pore size change was caused by the ionization of the ? COOH in the copolymer. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

6.
Hollow‐fiber ultrafiltration (UF) membranes were prepared from blends of poly(vinyl chloride) (PVC) and polystyrene (PS) with a dry/wet phase inversion method. Poly(ethylene glycol) (PEG) and N,N‐dimethylacetamide were used as the additive and solvent, respectively. The effects of the PEG concentration in the dope solution as an additive on the cross sections and inner and outer surface morphologies, permeability, and separation performance of the hollow fibers were examined. The mean pore size, pore size distribution, and mean roughness of both the inner and outer surfaces of the produced hollow fibers were determined by atomic force microscopy. Also, the mechanical properties of the hollow‐fiber membranes were investigated. UF experiments were conducted with aqueous solutions of poly(vinyl pyrrolidone) (PVP; K‐90, Mw = 360 kDa). From the results, we found that the PVC/PS hollow‐fiber membranes had two layers with a fingerlike structure. These two layers were changed from a wide and long to a thin and short morphology with increasing PEG concentration. A novel and until now undescribed shape of the nodules in the outer surfaces, which was denoted as a sea‐waves shape, was observed. The outer and inner pore sizes both increased with increasing PEG concentration. The water permeation flux of the hollow fibers increased from 104 to 367 L m?2 h?1 bar?1) at higher PEG concentrations. The PVP rejection reached the highest value at a PEG concentration of 4 wt %, whereas at higher values (from 4 to 9 wt %), the rejection decreased. The same trend was found also for the tensile stress at break, Young's modulus, and elongation at break of the hollow fibers. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 989‐1004, 2013  相似文献   

7.
Polyacrylonitrile (PAN) and polyester (PET) braided hollow tube that used as a special reinforcement are braided from their filaments via two‐dimensional weaving techniques. PAN braided tube reinforced homogeneous PAN hollow fiber membranes and PET braided tube reinforced heterogeneous PAN hollow fiber membranes are prepared by concentric circles squeezed‐coated spinning method. As for PAN hollow fiber membrane, the effects of PAN concentration on the performance of the prepared hollow fiber membranes are investigated in terms of pure water flux, protein rejection, mechanical strength, and morphology observations by a scanning electron microscope (SEM). The interfacial bonding state of the braided tube reinforced PAN hollow fiber membranes is studied by constant speed stretching method. Results show that the breaking strength of two‐dimensional braided tube reinforced PAN hollow fiber membranes is higher than 80 MPa. The structure of separation surface is similar to the structure of an asymmetric membrane. With the increase of polymer concentration, the membrane flux decreases while the retention rate of BSA increase. The membrane porosity and maximum pore size have the same decreasing tendency as the increase of PAN concentration. The results also show that the interfacial bonding state of the PAN two‐dimensional braided tube reinforced homogeneous PAN hollow fiber membranes is better than that of the PET two‐dimensional braided tube reinforced heterogeneous PAN hollow fiber membranes. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41795.  相似文献   

8.
Nickel is a cheaper metallic material compared to palladium membranes for H2 separation. In this work, metallic Ni hollow fiber membranes were fabricated by a combined phase inversion and atmospheric sintering method. The morphology and membrane thickness of the hollow fibers was tuned by varying the spinning parameters like bore liquid flow rate and air gap distance. H2 permeation through the Ni hollow fibers with N2 as the sweep gas was measured under various operating conditions. A rigorous model considering temperature profiles was developed to fit the experimental data. The results show that the hydrogen permeation flux can be well described by using the Sieverts’ equation, implying that the membrane bulk diffusion is still the rate‐limiting step. The hydrogen separation rate in the Ni hollow fiber module can be improved by 4–8% when switching the co‐current flow to the countercurrent flow operation. © 2017 American Institute of Chemical Engineers AIChE J, 63: 3026–3034, 2017  相似文献   

9.
Outer‐selective thin‐film composite (TFC) hollow fiber membranes offer advantages like less fiber blockage in the feed stream and high packing density for industrial applications. However, outer‐selective TFC hollow fiber membranes are rarely commercially available due to the lack of effective ways to remove residual reactants from fiber's outer surface during interfacial polymerization and form a defect‐free polyamide film. A new simplified method to fabricate outer‐selective TFC membranes on tribore hollow fiber substrates is reported. Mechanically robust tribore hollow fiber substrates containing three circular‐sector channels were first prepared by spinning a P84/ethylene glycol mixed dope solution with delayed demixing at the fiber lumen. The thin wall tribore hollow fibers have a large pure water permeability up to 300 L m?2 h?1 bar?1. Outer‐selective TFC tribore hollow fiber membranes were then fabricated by interfacial polymerization with the aid of vacuum sucking to ensure the TFC layer well‐attached to the substrate. Under forward osmosis studies, the TFC tribore hollow fiber membrane exhibits a good water flux and a small flux difference between active‐to‐draw (i.e., the active layer facing the draw solution) and active‐to‐feed (i.e., the active layer facing the feed solution) modes due to the small internal concentration polarization. A hyperbranched polyglycerol was further grafted on top of the newly developed TFC tribore hollow fiber membranes for oily wastewater treatment. The membrane displays low fouling propensity and can fully recover its water flux after a simple 20‐min water wash at 0.5 bar from its lumen side, which makes the membrane preferentially suitable for oil‐water separation. © 2015 American Institute of Chemical Engineers AIChE J, 61: 4491–4501, 2015  相似文献   

10.
An outer‐skin hollow‐fiber ultrafiltration (UF) membrane was spun from a new dope solution containing cellulose acetate (CA)/poly(vinyl pyrrolidone) (PVP 360K)/N‐methyl‐2‐pyrrolidone (NMP)/water using a wet‐spinning technique. The as‐spun fibers were posttreated with a hypochlorite solution over a range of concentrations for a fixed period of 24 h. The experimental results showed that the pure water flux of the treated membrane increased with increasing hypochlorite concentration. The treated membrane experienced an increased fouling tendency with increasing hypochlorite concentration because the hydrophilicity of the treated membrane decreased as a result of the removal of PVP contents in the membrane matrix after hypochlorite treatment. SEM images revealed that the membrane had an outer dense skin, a porous inner surface, and a spongelike structure, which confirmed that addition of PVP favored the suppression of macrovoids in the membrane. The membrane pore size could be significantly increased when the hypochlorite concentration reached 200 mg/L. It was concluded that hypochlorite treatment provided an additional option to easily alter the pore size of UF membranes. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 97: 227–231, 2005  相似文献   

11.
In this study, polysulfone (PSF) hollow fiber membranes with enhanced performance for humic acid removal were prepared from a dope solution containing PSF/DMAc/PVP/TiO2. The main reason for adding titanium oxide during dope solution preparation was to enhance the antifouling properties of membranes prepared. In the spinning process, air gap distance was varied in order to produce different properties of the hollow fiber membranes. Characterizations were conducted to determine membrane properties such as pure water flux, molecular weight cut off (MWCO), humic acid (HA) rejection and resistance to fouling tendency. The results indicated that the pure water flux and MWCO of membranes increased with an increase in air gap distance while HA retention decreased significantly with increasing air gap. Due to this, it is found that the PSF/TiO2 membrane spun at zero air gap was the best amongst the membranes produced and demonstrated > 90% HA rejection. Analytical results from FESEM and AFM also provided supporting evidence to the experimental results obtained. Based on the anti-fouling performance investigation, it was found that membranes with the addition of TiO2 were excellent in mitigating fouling particularly in reducing the fouling resistances due to concentration polarization, cake layer formation and absorption.  相似文献   

12.
A systematic study of the air gap effects on both the internal and the external morphology, permeability and separation performance of polyvinylidene fluoride (PVDF) hollow fiber membranes has been carried out. The hollow fibers were prepared using the dry-jet wet spinning process using a dope solution containing PVDF/ethylene glycol/N, N-dimethylacetamide with a weight ratio of 23/4/73. Ethanol aqueous solution, 50% by volume, was used as internal and external coagulants. The inner and the outer surfaces of the prepared hollow fibers were analyzed by atomic force microscopy (AFM), while their cross-sectional structure was studied by scanning electron microscopy (SEM). Ultrafiltration experiments were conducted using non-ionic solutes of different molecular weights. The results show that both the pore sizes and nodule sizes have a log-normal distribution. The pore size, nodule size and roughness parameters of the inner and outer surfaces of the hollow fibers were affected by the air gap distance. Alignment of nodules to the spinning direction was observed. Experimental results indicate that an increase in air gap distance, from 1 to , results in a hollow fiber with a lower permeation flux and a higher solute separation performance due to the decrease of the pore size. AFM analysis reveals that the air gap introduces an elongational stress because of gravity on the internal or external surfaces of the PVDF hollow fibers. At low air gap distance, the inner surface controls the ultrafiltration performance of the PVDF hollow fiber membranes because of its lower pore size, while at high air gap lengths the inner pore size becomes larger than the outer pore size. The turning point was observed at an air gap distance of .  相似文献   

13.
多孔堇青石中空纤维陶瓷膜的制备与表征(英文)   总被引:1,自引:0,他引:1  
采用相转化和烧结法,通过一步成型制备了新颖的堇青石中空纤维陶瓷膜,并对制备的中空纤维膜微观结构、孔隙率和孔径分布、抗弯强度、纯净水通量和氮气渗透性等结构与性能进行了表征。结果表明:堇青石中空纤维膜为多孔非对称结构,由内部大孔层和外部海绵状多孔层组成。在1360℃保温2h制备的堇青石中空纤维膜孔隙率为39.2%,抗弯强度为76.5MPa。0.10MPa压差下的纯净水和氮气渗透性分别达到61.34m3/(m2·h·MPa)和7824m3/(m2·h·MPa)。实验证明,采用较大粒径的廉价工业级粉体为原料,可制备非对称的中空纤维陶瓷微滤膜。  相似文献   

14.
A novel braid‐reinforced (BR) poly(vinyl chloride) (PVC) hollow fiber membrane was fabricated via dry‐wet spinning process. The mixtures of PVC polymer solutions were uniformly coated on the tubular braid which contained polyester (PET) and polyacrylonitrile (PAN) fibers. The influences of braid composition on structure and performance of BR PVC hollow fiber membranes were investigated. The results showed that the prepared BR PVC hollow fiber membranes were composed of two layers which contained separation layer and tubular braid supported layer when the PET and PET/PAN hybrid tubular braids were used as the reinforcement. But the sandwich structure appeared when the PAN tubular braid was used as the reinforcement, which revealed outer separation layer, tubular braid supported layer and the inner polymer layer. The BR PVC hollow fiber membranes that prepared by PET/PAN hybrid tubular braid had favorable interfacial bonding state compared with the membrane prepared by pure PET or PAN tubular braid. The pure water flux of the BR PVC hollow fiber membranes that prepared by the PET/PAN hybrid tubular braid were lower than that prepared by pure PET or PAN tubular braid, but the rejection of Bovine serum albumin was opposite. The tensile strength of prepared BR PVC hollow fiber membrane was higher than 50 MPa. Both of the tensile strength and elongation at break decreased with the increase of the PAN filaments in the PET/PAN hybrid tubular braid. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45068.  相似文献   

15.
Poly(vinylidene fluoride‐co‐hexafluoropropylene) (PVDF‐co‐HFP) hollow fiber membranes were prepared by using the phase inversion method. The effect of polyethylene glycol (PEG‐600Mw) with different concentrations (i.e., 0, 5, 7, 10, 12, 15, 18, and 20 wt %) as a pore former on the preparation and characterization of PVDF‐co‐HFP hollow fibers was investigated. The hollow fiber membranes were characterized using scanning electron microscopy, atomic force microscopy, and porosity measurement. It was found that there is no significant effect of the PEG concentration on the dimensions of the hollow fibers, whereas the porosity of the hollow fibers increases with increase of PEG concentration. The cross‐sectional structure changed from a sponge‐like structure of the hollow fiber prepared from pure PVDF‐co‐HFP to a finger‐like structure with small sponge‐like layer in the middle of the cross section with increase of PEG concentration. A remarkable undescribed shape of the nodules with different sizes in the outer surfaces, which are denoted as “twisted rope nodules,” was observed. The mean surface roughness of the hollow fiber membranes decreased with an increase of PEG concentration in the polymer solution. The mean pore size of the hollow fibers gradually increased from 99.12 to 368.91 nm with increase of PEG concentration in polymer solution. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

16.
For the purpose of separating aqueous alcohol by the use of pervaporation technique, a composite membrane of chitosan (CT) dip‐coated cellulose acetate (CA) hollow‐fiber membranes, CT‐d‐CA, was investigated. The effects of air‐gap distance in the spinning of CA hollow‐fiber membranes, chitosan concentration, and sorts of aqueous alcohol solutions on the pervaporation performances were studied. Compared with unmodified CA hollow‐fiber membrane, the CT‐d‐CA composite hollow‐fiber membrane effectively increases the permselectivity of water. The thickness of coating layer increases with an increase in chitosan concentration. As the concentration of chitosan solution increased, the permeation rate decreased and the concentration of water in the permeate increased. In addition, the effects of feed composition and feed solution temperature on the pervaporation performances were also investigated. The permeation rate and water content in permeate at 25°C for a 90 wt % aqueous isopropanol solution through the CT‐d‐CA composite hollow‐fiber membrane with a 5‐cm air‐gap distance spun, 2 wt % chitosan dip‐coated system were 169.5 g/m2 h and 98.9 wt %, respectively. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 94: 1562–1568, 2004  相似文献   

17.
A series of hollow‐fiber membranes was produced by the dry–wet spinning method from PEEKWC, a modified poly(ether ether ketone) with good mechanical, thermal, and chemical resistance. The fibers were prepared under different spinning conditions, varying the following spinning parameters: polymer concentration in the spinning solution, height of the air gap, and bore fluid composition. The effect of these parameters on the water permeability, the rejection of macromolecules (using dextrane with an average molecular weight of 68,800 g/mol), and the morphology of the membranes was studied. The results were also correlated to the viscosity of the spinning solution and to the ternary polymer/solvent/nonsolvent phase diagram. The morphology of the cross section and internal and external surfaces of the hollow fibers were analyzed using scanning electron microscopy (SEM). All membranes were shown to have a fingerlike void structure and a skin layer, depending on the spinning conditions, varying from (apparently) dense to porous. Pore size measurements by the bubble‐point method showed maximum pore sizes ranging from 0.3 to 2 μm. Permeability varied from 300 to 1000 L/(h?1 m?2 bar) and rejection to the dextrane from 10 to 78%. The viscosity of polymer solutions was in the range of 0.2 to 3.5 Pa s. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 91: 841–853, 2004  相似文献   

18.
采用了不同特性粘度的PVDF树脂,通过非溶剂致相分离法(NIPS)制备了相应的PVDF中空纤维膜。通过力学性能、纯水通量、牛血清白蛋白(BSA)截留率等性能测试发现,不同特性粘度的PVDF树脂制备的中空纤维膜的性能差异较大。随着PVDF特性粘度的增加,PVDF中空纤维膜的拉伸强度及断裂伸长率逐渐增加,纯水通量逐渐降低,BSA截留率先降低后增加。通过扫描电镜(SEM)进一步发现,随着PVDF特性粘度的增加,PVDF树脂制备的中空纤维膜,其海绵层上的孔状结构逐渐减少且变小。  相似文献   

19.
Polyethersulfone (PES) hollow fiber membranes were prepared by traditional dry‐wet spinning technique. Scanning electronic microscopy (SEM) was used to characterize membrane morphologies, and the membrane properties were evaluated via bubble point measurements and ultrafiltration experiments. The effects of spinning temperature on the morphologies and properties of PES fibers were investigated in detail. At a high spinning temperature, the obtained membrane structure consisting of a thin skin‐layer and loose sponge‐like sublayer endows PES membrane with not only good permeability, but also high solute rejection. Based on the determination of ternary phase diagrams and light transmittance curves, the relationship of membrane morphologies with thermodynamics and precipitation kinetics of membrane‐forming system was discussed. It was concluded that the morphologies and properties of PES hollow fiber membrane could be conveniently tuned by the adjustment of the spinning temperature and air gap. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

20.
Poly(ether ether ketone) (PEEK) hollow fiber membranes were prepared by a thermally induced phase separation method with polyetherimide as diluent, and N‐methyl pyrrolidone (NMP), dichloromethane and a composite extractant composed of NMP, ethanolamine and water as extractant. The effects of the different solvents induced crystallization on the pore structure during extraction and the properties of the PEEK hollow fiber membranes were investigated in detail. The crystallization behaviors of the membranes were characterized by DSC and XRD. The effect of the extractants on the microscopic morphologies, pore structures, water fluxes and mechanical properties of the membranes were investigated. The results showed that the extraction ability of the composite extractant was the most significant, followed by NMP and dichloromethane. The crystallinity of the hollow fiber was 39.0% before extraction and was elevated to 39.2% after the extraction with NMP, 46.6% with dichloromethane and 46.7% with the composite extractant, which shows that dichloromethane and the composite extractant have strong ability to induce the crystallization of PEEK. The inner and outer surfaces of the membranes obtained after extraction by the composite extractant had the largest pore size and the highest surface porosity. The most probable pore diameter of the membranes obtained after extraction by NMP, dichloromethane and the composite extractant was 23.26 nm, 24.43 nm and 24.43 nm, respectively, which indicated that solvent‐induced crystallization was beneficial for the formation of larger pores. The pure water flux of the PEEK membrane prepared by the composite extractant was the largest, but the tensile strength was the lowest. © 2019 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号