首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel benzoxazine containing maleimide and carboxylic moieties, 1‐[3‐(4‐carboxylphenyl)‐3,4‐dihydro‐2H‐benzo[e][1,3]‐oxazin‐6‐yl]maleimide (Mal‐Bz‐Co), was synthesized and the structure was identified by 1H‐NMR and FTIR. Mal‐Bz‐Co exhibited good solubility in common organic solvents. The cure behavior of Mal‐Bz‐Co and cocure behavior of Mal‐Bz‐Co with o‐cresol formaldehyde epoxy resin were investigated by differential scanning calorimetry. Results indicated that Mal‐Bz‐Co showed a single curing exothermic peak at about 238.3°C. However, the maximum curing temperature (Tp) decreased to 146.1°C when Mal‐Bz‐Co cocured with o‐cresol formaldehyde epoxy resin in the molar ratio of 1 : 1. The Tp was about 92°C lower than that of Mal‐Bz‐Co. Thermogravimetric analysis showed that high‐decomposition temperature and char yield were observed for the cured resins of Mal‐Bz‐Co and Mal‐Bz‐Co/o‐CFER. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

2.
A new type of polybenzoxazine‐clay nanocomposites were prepared by the in‐situ polymerization of allyl‐functional benzoxazine monomer, bis(3‐allyl‐3,4‐dihydro‐2H‐1,3‐benzoxazinyl)isopropane (B‐ala), in the presence of two different types of organoclay, allyldimethylstearylammonium‐montmorillonite and propyldimethylstearylammonium‐montmorillonite. The organoclays were mixed with molten B‐ala, followed by pouring into glass mold and then gradual curing up to 250°C. DSC and IR were used to follow the cure behavior of B‐ala in the presence of organoclay, indicating that organoclays catalyzed the ring opening of cyclic benzoxazine structure. The XRD of the nanocomposites showed featureless patterns, suggesting the exfoliation of the organoclay into the matrix. The viscoelastic properties of the hybrids showed that the glass transition temperatures (Tg) of the nanocomposites shifted to lower temperature in the presence of small amount of organoclay, but Tg started to increase with the increase of the organoclay content. This result suggests that, in the presence of organoclay, the curing reaction of ally and benzoxazine occurred in a different way, resulting in a different network structure. However, the presence of dispersed layered silicates into the matrix enhanced the thermal stability over the neat thermoset resin. POLYM. COMPOS., 2008. © 2008 Society of Plastics Engineers  相似文献   

3.
Two novel cyclic‐amine monomers, i.e., 3‐allyl‐5,5‐dimethylhydantoin (ADMH) and 7,8‐benzo‐3 allyl‐1,3‐diazasprio[4.5]decane‐2,4‐dione (BADDD) were synthesized with good yields by reacting allyl bromide with 5,5‐dimethylhydantoin (DMH) and 7,8‐benzo‐1,3‐diazasprio[4.5]decane‐2,4‐dione (BDDD), respectively. The synthesized monomers were characterized by FTIR and 1H‐NMR spectra, and copolymerized with acrylonitrile (AN), vinyl acetate (VAC), and methyl methacrylate (MMA) in a small monomer ratio of ADMH and BDDD, respectively. The copolymers were characterized by FTIR, 1H‐NMR, and DSC studies. The N‐halamine derivatives of the corresponding copolymers were found to exhibit high antibacterial activities against Escherichia coli, and the antibacterial properties were durable and regenerable. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 80: 2460–2467, 2001  相似文献   

4.
Six new fluorescent derivatives of 1,8‐naphthalimide were synthesized. Three were dyes, and three were fluorescent whitening agents (FWAs) containing a tetramethylpiperidine (TMP) stabilizer fragment. The FWAs were obtained under phase‐transfer catalysis conditions. Five of the compounds were copolymerized with methyl methacrylate, so copolymers with an intense color and/or fluorescence stable against solvents were obtained. The chemical bonding of the synthesized monomers in the polymers was confirmed spectrophotometrically. The participation of the monomer compounds did not significantly affect the process of copolymerization or the molecular masses of the obtained copolymers. The quantity of chemically bonded naphthalimide monomer in the copolymers was determined to be over 60%. The spectral properties of the compounds and their photostability in solution and in the copolymers were studied. The influence of the compounds on the photostability of the copolymers was determined. The compounds, especially those containing a stabilizer (TMP) fragment in their molecules, showed a positive stabilizing effect on the photodegradation of poly(methyl methacrylate). Polyamide fabrics with 2‐allyl‐6‐hydrazino‐benzo[de]isoquinoline‐1,3‐dione, 2‐allyl‐6‐(2‐amino‐ethylamino)‐benzo[de]isoquinoline‐1,3‐dione, and 2‐chloro‐N′‐(2‐methyl)‐1,3‐dioxo‐2,3‐dihydro‐1H‐benzo[de] isoquinoline‐6‐yl) acetohydrazide were dyed, and materials with an intense yellow color and fluorescence were obtained. Cotton fabrics were whitened with 2‐(2,2,6,6‐tetramethyl‐piperidin‐4‐yl)‐6‐methoxy‐benzo[de]isoquinoline‐1,3‐dione, 2‐(2,2,6,6‐tetramethyl‐piperidin‐4‐yl)‐6‐allyloxybenzo[de]isoquinoline‐1, 3‐dione, and 2‐[2‐(2,2,6,6‐tetramethyl‐piperidin‐4‐yl)‐1,3‐dioxo‐2,3‐dihidro‐1H benzo [de]isoquinoline‐6‐oxy]ethyl‐2‐methacrylate, and materials with bright whiteness and intense bluish fluorescence were obtained. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

5.
Renewable natural resources such as eugenol, furfurylamine, stearylamine, and jute fiber were used to prepare polybenzoxazine composites. The purity of eugenol which is extracted from clove was confirmed by gas chromatography. FTIR, 1H, and 13C NMR spectroscopic analysis were used to determine the structure of eugenol and the benzoxazine monomers namely 6‐allyl‐3‐furfuryl‐8‐methoxy‐3,4‐dihydro‐2H‐1,3‐benzoxazine (EF‐Bz) and 6‐allyl‐3‐octadecyl‐8‐methoxy‐3,4 dihydro‐2H‐1,3‐benzoxazine (ES‐Bz) synthesized from it. The curing analysis from differential scanning calorimetric analysis shows that the onset of curing is shifted to lower temperature (161°C) for EF‐Bz, when compared with ES‐Bz (174°C). The thermal stability analyzed from thermogravimetric analysis shows that the polybenzoxazine EF‐Pbz has higher thermal stability (T5% = 361°C) with that of ES‐Pbz (T5% = 313°C). The storage modulus, tensile, and flexural strength of the EF‐Bz/Jute fiber composite show high value when compared with ES‐Bz/Jute fiber composites. POLYM. COMPOS., 37:1821–1829, 2016. © 2014 Society of Plastics Engineers  相似文献   

6.
A new approach for the synthesis of novel annulated‐pyrazoles is presented. This protocol includes an intermolecular condensation followed by a copper‐mediated intramolecular C N or C O coupling reaction. The method is applied to a range of substituted 4‐iodopyrazolecarbaldehydes which react with 1,2‐phenylenediamines or 2‐aminophenols to yield substituted 2,4‐ or 1,4‐dihydrobenzo[b]pyrazolo[4,3‐e][1,4]diazepines or substituted‐2H‐ or 1H‐benzo[b]pyrazolo[3,4‐f][1,4]oxazepines, respectively.  相似文献   

7.
The radical‐initiated terpolymerization of 3,4‐dihydro‐2H‐pyran (DHP), maleic anhydride (MA), and vinyl acetate (VA), which were used as a donor–acceptor–donor system, was carried out in methyl ethyl ketone in the presence of 2,2′‐azobisisobutyronitrile as an initiator at 65°C in a nitrogen atmosphere. The synthesis and characterization of binary and ternary copolymers, some kinetic parameters of terpolymerization, the terpolymer‐composition/thermal‐behavior relationship, and the antitumor activity of the synthesized polymers were examined. The polymerization of the DHP–MA–VA monomer system predominantly proceeded by the alternating terpolymerization mechanism. The in vitro cytotoxicities of poly(3,4‐dihydro‐2H‐pyran‐alt‐maleic anhydride) [poly(DHP‐alt‐MA)] and poly(3,4‐dihydro‐2H‐pyran‐co‐maleic anhydride‐co‐vinyl acetate) [poly(DHP‐co‐MA‐co‐VA)] were evaluated with Raji cells (human Burkitt lymphoma cell line). The antitumor activity of the prepared anion‐active poly(DHP‐alt‐MA) and poly(DHP‐co‐MA‐co‐VA) polymers were studied with methyl–thiazol–tetrazolium testing, and the 50% cytotoxic dose was calculated. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 96: 2352–2359, 2005  相似文献   

8.
Vinyl ester resins are being used extensively as matrices in fiber‐reinforced polymer composite materials, but their use as a structural adhesive has been limited. Initial studies investigating the durability of a vinyl ester as a wood adhesive showed unsatisfactory performance in comparison with other adhesives. In this work, the glass‐transition temperatures (Tg's) of a vinyl ester and a E‐glass/vinyl ester composite material, fabricated by the Composites Pressure Resin Infusion System, were determined with dynamic mechanical thermal analysis. The results indicated that the resin cured under ambient conditions had a much lower Tg (~60°C) than the postcured material (~107°C). This suggested undercuring, that is, incomplete crosslinking, of the resin when it was cured at room temperature. E‐glass/vinyl ester samples, however, showed virtually no difference in Tg between room‐temperature‐cured and postcured samples. The exact reasons for this are not currently known but are thought to be both mechanical and chemical in nature. On the basis of the findings presented in this article, it can be concluded that if this vinyl ester resin is to be used as a structural adhesive, postcuring or formulation to ensure a high degree of crosslinking under ambient conditions is necessary. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 97: 2221–2229, 2005  相似文献   

9.
A bifunctional benzoxazine monomer, 6,6′‐bis(3‐methyl‐3,4‐dihydro‐2H‐benzo[e] [1,3]oxazinyl) sulfone (BS‐m), was synthesized from bisphenol‐S, methylamine, and formaldehyde via a solution method. The chemical structure of BS‐m was characterized with 1H and 13C‐nuclear magnetic resonance (NMR) spectroscopy, Fourier transform infrared (FTIR) spectroscopy, and elemental analysis. The ring‐opening polymerization reaction of BS‐m monomer was studied by FTIR, 13C solid‐state NMR, and differential scanning calorimetry. With the polymerization reaction proceeding, the intensities of the FTIR absorption peaks of CH2, C? O? C, and C? N? C of the oxazine ring decreased gradually, and some of these absorption peaks disappeared. The shapes and intensities of the absorption peaks associated with benzene ring, sulfone group, and aromatic C? S bond changed in various ways. The changes in the solid‐state 13C‐NMR pattern, including chemical shifts, intensity of resonances, and line‐width, were observed from the spectra of BS‐m and the corresponding polybenzoxazine. The melting process of BS‐m overlapped with the beginning of the ring‐opening polymerization reaction. The polymerization kinetic parameters were evaluated for nonisothermal and isothermal polymerization of BS‐m. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

10.
The benzoxazine scaffolds are of much interest as they are found in a large array of natural products and pharmaceutical drugs with diverse activities. We have developed a palladium‐catalyzed decarboxylative selective mono‐ and bis‐acylation of 4H‐benzo[d][1,3]oxazin‐4‐one derivatives with α‐oxo carboxylic acids via preferential cyclic imine‐N‐directed C−H activation. 2‐Aryl‐4H‐benzo[d][1,3]oxazin‐4‐one was acylated with a variety of substituted phenylglyoxylic acids to produce the corresponding products. It was observed that electron‐donating groups (CH3, OCH3) at any position of the aromatic ring of phenylglyoxylic acid provided good to excellent yields, whereas phenylglyoxylic acids containing electron‐withdrawing groups (COCH3, CN, NO2) gave the products in moderate yields. Interestingly when the reaction was performed with silver triflate (AgOTf) in place of silver nitrate (AgNO3) in the presence of 4 equivalents of glyoxylic acid, the bis‐acylated product was obtained together with a small amount of mono‐acylated product. This is the first report of acylation of 2‐aryl‐4H‐benzo[d][1,3]oxazin‐4‐ones via C−H activation. The notable features of this reaction are acylation with more challenging heteroarene‐oxo carboxylic acids and alkyl oxo carboxylic acids. This new protocol provides an easy and efficient access to a variety of o‐acyl‐4H‐benzo[d][1,3]oxazin‐4‐one derivatives which are of pharmaceutical importance.

  相似文献   


11.
Summary: Glass fabric reinforced hybrid matrix composites of a toughened silicone resin and a vinyl ester resin were fabricated and their properties investigated. The hybrid composites consisted of multi‐layers of fiber reinforced silicone resins and vinyl ester resins. The toughened silicone resin, a crosslinkable phenylsilsesquioxane resin with high thermal and thermal oxidation resistance but relatively low Tg, was chosen to be the outer layers. The vinyl ester resin, with better strength, toughness and a much higher Tg than the toughened silicone resin, was used as the inner layers. A co‐cure process proved to establish a strong interface between the two in a hybrid composite. The hybrid composites had better flammability properties and much lower short term moisture absorption than the vinyl ester composites. The strength and modulus retention of the hybrid composites at elevated temperatures was higher than the composites using any single resin as the matrix. For example, when tested at 150 °C the flexural modulus and strength values of a twelve layer composite, with eight inner vinyl ester resin layers and four silicone outer layers, were almost an order of magnitude higher than the composite using the silicone resin alone, and were significantly higher than the one using vinyl ester resin alone. The room temperature short beam shear strength of the hybrid composites was also higher. DMA revealed that the inter‐diffusion of reactive components between the two resins was probably responsible for this synergistic effect, resulting in an α transition temperature of 182 °C for the hybrid composite, higher than that of either the silicone resin (85 °C) or the vinyl ester resin (162 °C).

  相似文献   


12.
Anion functionalized strategy has been proposed for the synthesis of macro‐porous resins [IRA‐900][An] through the neutral reaction of the basic resin [IRA‐900][OH] with the corresponding donors. Combining CO2 adsorption results and FT‐IR, solid‐state 13C NMR characterization as well as quantum chemical calculations, chemical adsorption mechanism was verified and tunable capture of CO2 was realized. Among them, the anion functionalized resin [IRA‐900][Triz] exhibits an extremely high adsorption capacity (4.02 mmol g?1 at 25°C, 0.15 bar), outperforming many other good adsorbents. Finally, we discuss the thermostability and recycling stability of [IRA‐900][Triz], which shows a great potential in the industrial capture of CO2. © 2017 American Institute of Chemical Engineers AIChE J, 63: 3008–3015, 2017  相似文献   

13.
A novel siloxane‐imide‐containing polybenzoxazine based on N,N′‐bis(N‐phenyl‐3,4‐dihydro‐2H‐benzo[1,3]oxazine)‐5, 5′‐bis(1,1′,3,3′‐tetramethyldisiloxane‐1,3‐diyl)‐bis(norborane‐2,3‐dicarboximide) (BZ‐A1) was successfully synthesized. The thermal properties of BZ‐A1 are superior to those of conventional polybenzoxazines lacking siloxane groups. Polymerized BZ‐A1 possesses extremely low surface free energy (γs = 15.1 mJ m?2) after curing at 230 °C for 1 h. Moreover, the surface free energy of polymerized BZ‐A1 is more stable than conventional bisphenol A‐type polybenzoxazine during thermal curing and annealing processes, indicating that polymerized BZ‐A1 is more suitable for applications requiring low surface free energy materials for high temperatures over long periods of time. Copyright © 2010 Society of Chemical Industry  相似文献   

14.
A propargylic ester containing a propargylic alkoxy group has been observed to preferentially undergo [1,2]‐acyl shift over [1,3]‐shift. In addition, the complementary and contrasting reactivity of vinyl vs. alkynyl platinum carbenoids has been discovered. Vinyl platinum carbenoids are more prone to undergo [1,2]‐H shift over addition to π‐bonds whereas alkynyl platinum carbenoids preferentially add to π‐bonds.  相似文献   

15.
The thermosetting resin from 2,2′‐(1,3‐phenylene)‐bis(4,5‐dihydro‐oxazoles) (PBO) and bis(3‐phenyl‐3,4‐dihydro‐2H‐1,3‐benzoxazine)isopropane (BZ) was prepared, and it was found that the thermal property of the final resin was affected greatly by the content of PBO. The nanocomposite from the thermosetting resin from BZ and PBO (molar ratio of PBO to BZ, 0.8 : 1) (PBZ–PBO) and organically modified montmorillonite (OMMT) was prepared by melt method. Differential scanning calorimetry showed that on the introduction of OMMT, the onset curing temperature of the copolymerization of BZ and PBO decreased. The X‐ray diffractometer and transmission electron micrograph characterization of the dispersion of OMMT in the PBZ–PBO matrix suggested that exfoliation structure of OMMT was achieved. Dynamic mechanical analyses indicated that the nanocomposites exhibited much higher Tg values than the PBZ–PBO resin and pristine polybenzoxazine, and storage modulus of the nanocomposites was maintained up to higher temperature with the increasing OMMT content. Dynamic thermogravimetric analysis showed that the dispersion of clay nanolayers in the PBZ–PBO copolymer gave better thermal stability. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 4741–4747, 2006  相似文献   

16.
Previously, we observed that the oxazinone ring is important for cytochrome P450 2B6 (CYP2B6) activity toward efavirenz ((4S)‐6‐chloro‐4‐(2‐cyclopropylethynyl)‐1,4‐dihydro‐4‐(trifluoromethyl)‐2H‐3,1‐benzoxazin‐2‐one), a CYP2B6 substrate used to treat HIV. To further understand the structural characteristics of efavirenz that render it a CYP2B6 substrate, we tested the importance of each heteroatom of the oxazinone ring. We assembled a panel of five analogues: 6‐chloro‐4‐(2‐cyclopropylethynyl)‐1,4‐dihydro‐2‐methyl‐4‐(trifluoromethyl)‐2H‐3,1‐benzoxazine ( 1 ), (4S)‐6‐chloro‐4‐[(1E)‐2‐cyclopropylethenyl]‐3,4‐dihydro‐4‐(trifluoromethyl)‐2(1H)‐quinazolinone ( 2 ), (4S)‐6‐chloro‐4‐(2‐cyclopropylethynyl)‐3,4‐dihydro‐4‐(trifluoromethyl)‐2(1H)‐quinazolinone ( 3 ), 6‐chloro‐4‐(cyclopropylethynyl)‐3,4‐dihydro‐4‐(trifluoromethyl)‐2(1H)‐quinolinone ( 4 ), and 6‐chloro‐4‐(cyclopropylethynyl)‐4‐(trifluoromethyl)‐4H‐benzo[d][1,3]dioxin‐2‐one ( 5 ). The metabolism of compounds 1 – 5 was investigated using human liver microsomes, individual P450s, and mass spectrometry or UV/Vis absorbance detection. Steady‐state analysis of CYP2B6 metabolism of 1 – 5 showed KM values ranging from 0.3‐ to 3.9‐fold different from that observed for efavirenz (KM: 3.6±1.7 μm ). The lowest KM values, approximating 1 μm , were observed for the metabolism of 1 , whereas the greatest KM value, 14±6.4 μm , was found for 4 . Our work reveals that analogues with heteroatom changes in the oxazinone ring are still CYP2B6 substrates, although the changes in KM suggest altered substrate binding.  相似文献   

17.
Unsaturated polyester resin (UP) was prepared from glycolyzed oligomer of poly(ethylene terephthalate) (PET) waste based on diethylene glycol (DEG). New diacrylate and dimethacrylate vinyl ester resins prepared from glycolysis of PET with tetraethylene glycol were blended with UP to study the mechanical characteristics of the cured UP. The vinyl ester resins were used as crosslinking agents for unsaturated polyester resin diluted with styrene, using free‐radical initiator and accelerator. The mechanical properties of the cured UP resins were evaluated. The compressive properties of the cured UP/styrene resins in the presence of different vinyl ester concentrations were evaluated. Increasing the vinyl ester content led to a pronounced improvement in the compression strength. The chemical resistances of the cured resins were evaluated through hot water, solvents, acid, and alkali resistance measurements. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 3175–3182, 2007  相似文献   

18.
The depolymerization of poly(ethylene terephthalate) via an aminolysis process was studied. An excess of ethanol amine in the presence of sodium acetate as a catalyst was used to produce bis(2‐hydroxyl ethylene) terephthalamide (BHETA). Unsaturated polyester (UP) resins were obtained by the reaction of BHETA with different long‐chain dibasic acids such as decanedioic acid, tetradecanoic acid, and octadecanoic acid in conjunction with maleic anhydride as a source of unsaturation. The chemical structure of the UP resins was confirmed by 1H‐NMR. The vinyl ester resins were used as crosslinking agents for UP. The curing behavior and mechanical properties of the UP resins with vinyl ester were evaluated at different temperatures ranging from 25 to 55°C. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

19.
Sluggish and narrow process window of phthalonitrile resin has tremendously limited their wide applications. In this work, a novel phthalonitrile containing benzoxazine (4,4′‐(((propane‐2,2‐diylbis (2H‐benzo [e] [1,3]oxazine‐6,3 (4H)‐diyl) bis(3,1‐phenylene))bis(oxy)) diphthalonitrile, BA‐ph) with ortho‐diallyl bisphenol A (DABPA) was investigated. The processing window of the BA‐ph/DABPA blends were found from 50°C to 185°C, which was significantly broader than that of the pure BA‐ph (120–200°C). The composites were prepared through a curing process involving sequential polymerization of allyl moieties, ring‐opening polymerization of oxazine rings and ring‐forming polymerization of nitrile groups. BA‐ph/DABPA/GF(glass fiber) composite laminates were prepared in this study, and the composite laminate with BA‐ph/DABPA molar ratio of 2/2 showed an outstanding flexural strength and modulus of 560 MPa and 37 GPa, respectively, as well as a superior thermal and thermo‐oxidative stability up to 408 and 410°C. These outstanding properties suggest that the BA‐ph/DABPA/GF composites are suitable candidates as matrices for high performance composites. POLYM. ENG. SCI., 56:150–157, 2016. © 2015 Society of Plastics Engineers  相似文献   

20.
Reversible addition–fragmentation chain transfer (RAFT) polymerization of styrene was carried out in the presence of a novel RAFT reagent, bearing 1,3‐benzodioxole group, benzo [1,3]dioxole‐5‐carbodithioic acid benzo [1,3]dioxol‐5‐ylmethyl ester (BDCB), to prepare end‐functionalized polystyrene. The polymerization results showed that RAFT polymerization of styrene could be well controlled. Number–average molecular weight (Mn(GPC)) increased linearly with monomer conversion, and molecular weight distributions were narrow (Mw/Mn < 1.4). The successful reaction of chain extension and analysis of 1H NMR spectra confirmed the existence of the functional 1,3‐benzodioxole group at the chain‐end of polystyrene. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 99: 3535–3539, 2006  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号