首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
The cumulative sum (CUSUM) chart is a very effective control charting procedure used for the quick detection of small‐sized and moderate‐sized changes. It can detect small process shifts missed by the Shewhart‐type control chart, which is sensitive mainly to large shifts. To further enhance the sensitivity of the CUSUM control chart at detecting very small process disturbances, this article presents CUSUM control charts based on well‐structured sampling procedures, double ranked set sampling, median‐double ranked set sampling, and double‐median ranked set sampling. These sampling techniques significantly improve the overall performance of the CUSUM chart over the entire process mean shift range, without increasing the false alarm rate. The newly developed control schemes do not only dominate most of the existing charts but are also easy to design and implement as illustrated through an application example of real datasets. The control schemes used for comparison in this study include the conventional CUSUM chart, a fast initial response CUSUM chart, a 2‐CUSUM chart, a 3‐CUSUM chart, a runs rules‐based CUSUM chart, the enhanced adaptive CUSUM chart, the CUSUM chart based on ranked set sampling (RSS), and the single CUSUM and combined Shewhart–CUSUM charts based on median RSS. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

2.
In recent years, the memory‐type control charts—exponentially weighted moving average (EWMA) and cumulative sum (CUSUM)—along with the adaptive and dual control‐charting structures have received considerable attention because of their excellent ability in providing an overall good detection over a range of mean‐shift sizes. These adaptive memory‐type control charts include the adaptive exponentially weighted moving average (AEWMA), dual CUSUM, and adaptive CUSUM charts. In this paper, we propose a new AEWMA chart for efficiently monitoring the process mean. The idea is to first design an unbiased estimator of the mean shift using the EWMA statistic and then adaptively update the smoothing constant of the EWMA chart. The run length profiles of the proposed AEWMA chart are computed using extensive Monte Carlo simulations. Based on a comprehensive comparative study, it turns out that the proposed AEWMA chart performs better than the existing AEWMA, adaptive CUSUM, dual CUSUM, and Shewhart‐CUSUM charts, in terms of offering more balanced protection against mean shifts of different sizes. An example is also used to explain the working of the existing and proposed control charts.  相似文献   

3.
In this paper, we propose 3 new control charts for monitoring the lower Weibull percentiles under complete data and Type‐II censoring. In transforming the Weibull distribution to the smallest extreme value distribution, Pascaul et al (2017) presented an exponentially weighted moving average (EWMA) control chart, hereafter referred to as EWMA‐SEV‐Q, based on a pivotal quantity conditioned on ancillary statistics. We extended their concept to construct a cumulative sum (CUSUM) control chart denoted by CUSUM‐SEV‐Q. We provide more insights of the statistical properties of the monitoring statistic. Additionally, in transforming a Weibull distribution to a standard normal distribution, we propose EWMA and CUSUM control charts, denoted as EWMA‐YP and CUSUM‐YP, respectively, based on a pivotal quantity for monitoring the Weibull percentiles with complete data. With complete data, the EWMA‐YP and CUSUM‐YP control charts perform better than the EWMA‐SEV‐Q and CUSUM‐SEV‐Q control charts in terms of average run length. In Type‐II censoring, the EWMA‐SEV‐Q chart is slightly better than the CUSUM‐SEV‐Q chart in terms of average run length. Two numerical examples are used to illustrate the applications of the proposed control charts.  相似文献   

4.
The cumulative sum (CUSUM) control chart is known as a sensitive control chart to a slight change of the process quality characteristics. This control chart is designed based on a series of cumulative sum of the statistic derived from data. For normally distributed characteristics, it should be needed to monitor both changes of the mean and variance simultaneously. However, it is difficult to design the CUSUM or joint control chart using the statistics of and s or R jointly. By the way, Kanagawa et.al . have proposed the ( )control chart which enables the user to monitor both changes of the mean and variance simultaneously based on one statistic for normally distributed characteristics. When the CUSUM control chart is considered based on the ( ) control chart, it is possible to design and use the CUSUM control chart more easily than the joint CUSUM and either R or s control charts. Hence, we consider a CUSUM ( ) control chart in order to improve the performance for a slight change of the process quality characteristics in this article. In addition, the economical operation of the CUSUM ( ) control chart is also considered.  相似文献   

5.
A control chart is a powerful statistical process monitoring tool that is frequently used in many industrial and service organizations to monitor in‐control and out‐of‐control performances of the manufacturing processes. Cumulative sum (CUSUM) and exponentially weighted moving average (EWMA) control charts have been recognized as potentially powerful tool in quality and management control. These control charts are sensitive to both small and moderate changes in the process. In this paper, we propose a new CUSUM (NCUSUM) quality control scheme for efficiently monitoring the process mean. It is shown that the classical CUSUM control chart is a special case of the proposed controlling scheme. The NCUSUM control chart is compared with some of the recently proposed control charts by using characteristics of the distribution of run length, i.e. average run length, median run length and standard deviation of run length. It is worth mentioning that the NCUSUM control chart detects the random shifts in the process mean substantially quicker than the classical CUSUM, fast initial response‐based CUSUM, adaptive CUSUM with EWMA‐based shift, adaptive EWMA and Shewhart–CUSUM control charts. An illustrative example is given to exemplify the implementation of the proposed quality control scheme. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

6.
A control chart is a graphical tool used for monitoring a production process and quality improvement. One such charting procedure is the Shewhart‐type control chart, which is sensitive mainly to the large shifts. For small shifts, the cumulative sum (CUSUM) control charts and exponentially weighted moving average (EWMA) control charts were proposed. To further enhance the ability of the EWMA control chart to quickly detect wide range process changes, we have developed an EWMA control chart using the median ranked set sampling (RSS), median double RSS and the double median RSS. The findings show that the proposed median‐ranked sampling procedures substantially increase the sensitivities of EWMA control charts. The newly developed control charts dominate most of their existing counterparts, in terms of the run‐length properties, the Average Extra Quadratic Loss and the Performance Comparison Index. These include the classical EWMA, fast initial response EWMA, double and triple EWMA, runs‐rules EWMA, the max EWMA with mean‐squared deviation, the mixed EWMA‐CUSUM, the hybrid EWMA and the combined Shewhart–EWMA based on ranks. An application of the proposed schemes on real data sets is also given to illustrate the implementation and procedural details of the proposed methodology. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

7.
Multivariate CUSUM control charts are often used instead of the standard Hotelling's control charts in many practical problems when detection of small shifts in the process mean is important. However, design of multivariate CUSUM control charts are usually based on the average run length (ARL). In this work, we will compute the percentage points of the run-length distributions of two multivariate CUSUM control charts. It will be shown that interpretations based on ARL can be misleading since the in-control run-length distribution of a multivariate CUSUM is highly skewed. On the other hand, the percentage points of the run-length distribution provide additional information such as the median run length, early false out-of-control signals, and the skewness of the run-length distribution for a particular scheme. These extra information might provide quality control engineers further knowledge of a particular multivariate CUSUM control chart scheme.  相似文献   

8.
There has been a growing interest in monitoring processes featuring serial dependence and zero inflation. The phenomenon of excessive zeros often occurs in count time series because of the advancement of quality in manufacturing process. In this study, we propose three control charts, such as the cumulative sum chart with delay rule (CUSUM‐DR), conforming run length (CRL)‐CUSUM chart, and combined Shewhart CRL‐CUSUM chart, to enhance the performance of monitoring Markov counting processes with excessive zeros. Numerical experiments are conducted based on integer‐valued autoregressive time series models, for example, zero‐inflated Poisson INAR and INARCH, to evaluate the performance of the proposed charts designed for the detection of mean increase. A real example is also illustrated to demonstrate the usability of our proposed charts.  相似文献   

9.
Monitoring stochastic processes with control charts is the main field of application in statistical process control. For a Poisson hidden Markov model (HMM) as the underlying process, we investigate a Shewhart individuals chart, an ordinary Cumulative Sum (CUSUM) chart, and two different types of log-likelihood ratio (log-LR) CUSUM charts. We evaluate and compare the charts' performance by their average run length, computed either by utilizing the Markov chain approach or by simulations. Our performance evaluation includes various out-of-control scenarios as well as different levels of dependence within the HMM. It turns out that the ordinary CUSUM chart shows the best overall performance, whereas the other charts' performance strongly depend on the particular out-of-control scenario and autocorrelation level, respectively. For illustration, we apply the HMM and the considered charts to a data set about weekly sales counts.  相似文献   

10.
For an improved monitoring of process parameters, it is generally desirable to have efficient designs of control charting structures. The addition of Shewhart control limits to the cumulative sum (CUSUM) control chart is a simple monitoring scheme sensitive to wide range of mean shifts. To improve the detection ability of the combined Shewhart–CUSUM control chart to off‐target processes, we developed the scheme using ranked set sampling instead of the traditional simple random sampling. We investigated the run length properties of the Shewhart–CUSUM with ranked set samples and compared their performance with certain established control charts. It is revealed that the proposed schemes offer better protection against different types of mean shifts than the existing counterparts including classical Shewhart, classical CUSUM, classical combined Shewhart–CUSUM, adaptive CUSUM, double CUSUM, three simultaneous CUSUM, combined Shewhart‐weighted CUSUM, runs rules‐based CUSUM and the mixed exponentially weighted moving average‐CUSUM. Applications on real data sets are also given to demonstrate the implementation simplicity of the proposed schemes Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

11.
An adaptive multivariate cumulative sum (AMCUSUM) control chart has received considerable attention because of its ability to dynamically adjust the reference parameter whereby achieving a better performance over a range of mean shifts than the conventional multivariate cumulative sum (CUSUM) charts. In this paper, we introduce a progressive mean–based estimator of the process mean shift and then use it to devise new weighted AMCUSUM control charts for efficiently monitoring the process mean. These control charts are easy to design and implement in a computerized environment compared with their existing counterparts. Monte Carlo simulations are used to estimate the run‐length characteristics of the proposed control charts. The run‐length comparison results show that the weighted AMCUSUM charts perform substantially and uniformly better than the classical multivariate CUSUM and AMCUSUM charts in detecting a range of mean shifts. An example is used to illustrate the working of existing and proposed multivariate CUSUM control charts.  相似文献   

12.
This paper considers the problem of obtaining robust control charts for detecting changes in the mean µ and standard deviation σ of process observations that have a continuous distribution. The standard control charts for monitoring µ and σ are based on the assumption that the process distribution is normal. However, the process distribution may not be normal in many situations, and using these control charts can lead to very misleading conclusions. Although some control charts for µ can be tuned to be robust to non‐normal distributions, the most critical problem with non‐robustness is with the control chart for σ. This paper investigates the performance of two CUSUM chart combinations that can be made to be robust to non‐normality. One combination consists of the standard CUSUM chart for µ and a CUSUM chart of absolute deviations from target for σ, where these CUSUM charts are tuned to detect relatively small parameter shifts. The other combination is based on using winsorized observations in the standard CUSUM chart for µ and a CUSUM chart of squared deviations from target for σ. Guidance is given for selecting the design parameters and control limits of these robust CUSUM chart combinations. When the observations are actually normal, using one of these robust CUSUM chart combination will result in some reduction in the ability to detect moderate and large changes in µ and σ, compared with using a CUSUM chart combination that is designed specifically for the normal distribution. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

13.
In this paper we discuss the basic procedures for the implementation of multivariate statistical process control via control charting. Furthermore, we review multivariate extensions for all kinds of univariate control charts, such as multivariate Shewhart‐type control charts, multivariate CUSUM control charts and multivariate EWMA control charts. In addition, we review unique procedures for the construction of multivariate control charts, based on multivariate statistical techniques such as principal components analysis (PCA) and partial least squares (PLS). Finally, we describe the most significant methods for the interpretation of an out‐of‐control signal. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

14.
A multivariate extension of the exponentially weighted moving average (EWMA) control chart is presented, and guidelines given for designing this easy-to-implement multivariate procedure. A comparison shows that the average run length (ARL) performance of this chart is similar to that of multivariate cumulative sum (CUSUM) control charts in detecting a shift in the mean vector of a multivariate normal distribution. As with the Hotelling's χ2 and multivariate CUSUM charts, the ARL performance of the multivariate EWMA chart depends on the underlying mean vector and covariance matrix only through the value of the noncentrality parameter. Worst-case scenarios show that Hotelling's χ2 charts should always be used in conjunction with multivariate CUSUM and EWMA charts to avoid potential inertia problems. Examples are given to illustrate the use of the proposed procedure.  相似文献   

15.
Control charts are extensively used in processes and are very helpful in determining the special cause variations so that a timely action may be taken to eliminate them. One of the charting procedures is the Shewhart‐type control charts, which are used mainly to detect large shifts. Two alternatives to the Shewhart‐type control charts are the cumulative (CUSUM) control charts and the exponentially weighted moving average (EWMA) control charts that are specially designed to detect small and moderately sustained changes in quality. Enhancing the ability of design structures of control charts is always desirable and one may do it in different ways. In this article, we propose two runs rules schemes to be applied on EWMA control charts and evaluate their performance in terms of the Average Run Length (ARL). Comparisons of the proposed schemes are made with some existing representative CUSUM and EWMA‐type counterparts used for small and moderate shifts, including the classical EWMA, the classical CUSUM, the fast initial response CUSUM and EWMA, the weighted CUSUM, the double CUSUM, the distribution‐free CUSUM and the runs rules schemes‐based CUSUM. The findings of the study reveal that the proposed schemes are able to perform better than all the other schemes under investigation. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

16.
The primary objective of multivariate statistical process control is to monitor the related process quality characteristics over time and identify the assignable causes affecting the process using multivariate control charts. When an out‐of‐control signal is obtained from the chart, it is imperative to be able to detect the component variables that have gone out‐of‐control. In this paper we propose a new charting procedure for T2, multivariate exponentially weighted moving average and multivariate cumulative sum control charts. The proposed charts will facilitate in identification of the source of out‐of‐control signal and are simple, economical and easier to implement. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
We evaluate the performance of the Crosier's cumulative sum (C‐CUSUM) control chart when the probability distribution parameters of the underlying quality characteristic are estimated from Phase I data. Because the average run length (ARL) under estimated parameters is a random variable, we study the estimation effect on the chart performance in terms of the expected value of the average run length (AARL) and the standard deviation of the average run length (SDARL). Previous evaluations of this control chart were conducted while assuming known process parameters. Using the Markov chain and simulation approaches, we evaluate the in‐control performance of the chart and provide some quantiles for its in‐control ARL distribution under estimated parameters. We also compare the performance of the C‐CUSUM chart to that of the ordinary CUSUM (O‐CUSUM) chart when the process parameters are unknown. Our results show that large number of Phase I samples are required to achieve a quite reasonable performance. Additionally, the performance of the C‐CUSUM chart is found to be superior to that of the O‐CUSUM chart. Finally, we recommend the use of a recently proposed bootstrap procedure in designing the C‐CUSUM chart to guarantee, at a certain probability, that the in‐control ARL will be of at least the desired value using the available amount of Phase I data. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

18.
ISO/DIS 7870 has presented the cumulative sum chart, the moving average chart, and the exponentially weighted moving average chart as control charts using accumulated data. In this paper, we compare the three control charts in terms of change-point estimation. We show the probability distribution, the bias and the mean square error of the change-point estimators using a Markov process and Monte Carlo simulation. These control charts have almost equivalent performances based on average run length considerations when parameters of each control chart are set appropriately. However, from the viewpoint of change-point estimation we recommend the CUSUM chart.  相似文献   

19.
The Weibull distribution can be used to effectively model many different failure mechanisms due to its inherent flexibility through the appropriate selection of a shape and a scale parameter. In this paper, we evaluate and compare the performance of three cumulative sum (CUSUM) control charts to monitor Weibull‐distributed time‐between‐event observations. The first two methods are the Weibull CUSUM chart and the exponential CUSUM (ECUSUM) chart. The latter is considered in literature to be robust to the assumption of the exponential distribution when observations have a Weibull distribution. For the third CUSUM chart included in this study, an adjustment in the design of the ECUSUM chart is used to account for the true underlying time‐between‐event distribution. This adjustment allows for the adjusted ECUSUM chart to be directly comparable to the Weibull CUSUM chart. By comparing the zero‐state average run length and average time to signal performance of the three charts, the ECUSUM chart is shown to be much less robust to departures from the exponential distribution than was previously claimed in the literature. We demonstrate the advantages of using one of the other two charts, which show surprisingly similar performance. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

20.
In many cases, data do not follow a specific probability distribution in practice. As a result, a variety of distribution‐free control charts have been developed to monitor changes in the processes. An existing rank‐based multivariate cumulative sum (CUSUM) procedure based on the antirank vector does not quickly detect the large shift levels of the process mean. In this paper, we explore and develop an improved version of the existing rank‐based multivariate CUSUM procedure in order to overcome the difficulty. The numerical experiments show that the proposed approach dramatically outperforms the existing rank‐based multivariate CUSUM procedure in terms of the out‐of‐control average run length. In addition, the proposed approach particularly resolves the critical problem of the original approach, which occurs in the simultaneous shifts whose components are all the same but not 0. We believe that the proposed approach can be utilized for monitoring real data. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号