首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The control chart is a very popular tool of statistical process control. It is used to determine the existence of special cause variation to remove it so that the process may be brought in statistical control. Shewhart‐type control charts are sensitive for large disturbances in the process, whereas cumulative sum (CUSUM)–type and exponentially weighted moving average (EWMA)–type control charts are intended to spot small and moderate disturbances. In this article, we proposed a mixed EWMA–CUSUM control chart for detecting a shift in the process mean and evaluated its average run lengths. Comparisons of the proposed control chart were made with some representative control charts including the classical CUSUM, classical EWMA, fast initial response CUSUM, fast initial response EWMA, adaptive CUSUM with EWMA‐based shift estimator, weighted CUSUM and runs rules–based CUSUM and EWMA. The comparisons revealed that mixing the two charts makes the proposed scheme even more sensitive to the small shifts in the process mean than the other schemes designed for detecting small shifts. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

2.
A control chart is a powerful statistical process monitoring tool that is frequently used in many industrial and service organizations to monitor in‐control and out‐of‐control performances of the manufacturing processes. Cumulative sum (CUSUM) and exponentially weighted moving average (EWMA) control charts have been recognized as potentially powerful tool in quality and management control. These control charts are sensitive to both small and moderate changes in the process. In this paper, we propose a new CUSUM (NCUSUM) quality control scheme for efficiently monitoring the process mean. It is shown that the classical CUSUM control chart is a special case of the proposed controlling scheme. The NCUSUM control chart is compared with some of the recently proposed control charts by using characteristics of the distribution of run length, i.e. average run length, median run length and standard deviation of run length. It is worth mentioning that the NCUSUM control chart detects the random shifts in the process mean substantially quicker than the classical CUSUM, fast initial response‐based CUSUM, adaptive CUSUM with EWMA‐based shift, adaptive EWMA and Shewhart–CUSUM control charts. An illustrative example is given to exemplify the implementation of the proposed quality control scheme. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

3.
Because of the characteristics of a system or process, several prespecified changes may happen in some statistical process control applications. Thus, one possible and challenging problem in profile monitoring is detecting changes away from the ‘normal’ profile toward one of several prespecified ‘bad’ profiles. In this article, to monitor the prespecified changes in linear profiles, two two‐sided cumulative sum (CUSUM) schemes are proposed based on Student's t‐statistic, which use two separate statistics and a single statistic, respectively. Simulation results show that the CUSUM scheme with a single statistic uniformly outperforms that with two separate statistics. Besides, both CUSUM schemes perform better than alternative methods in detecting small shifts in prespecified changes, and become comparable on detecting moderate or large shifts when the number of observations in each profile is large. To overcome the weakness in the proposed CUSUM methods, two modified CUSUM schemes are developed using z‐statistic and studied when the in‐control parameters are estimated. Simulation results indicate that the modified CUSUM chart with a single charting statistic slightly outperforms that with two separate statistics in terms of the average run length and its standard deviation. Finally, illustrative examples indicate that the CUSUM schemes are effective. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

4.
In this article, a new approach is proposed which uses the hyperbolic tangent function to model and monitor vacuum heat treatment process data. The proposed hyperbolic tangent function approach is compared to the smoothing spline approach. The latter serves as the benchmark when the vacuum heat treatment profile is investigated. The vector of the obtained parameter estimates is monitored by using Hotelling's method for the hyperbolic tangent function approach, and the metrics method used for the smoothing spline approach. For the purposes of verification, data from a real aluminum alloy heat treatment process is used to illustrate the proposed approach. In Phase I, the modified hyperbolic tangent function and the smoothing spline are first utilized to fit the process data. The proposed approach provides a better fitting result than the smoothing spline approach. In Phase II, the proposed approach produces a much better out-of-control average run length (ARL) performance than the smoothing spline approach when the heat treatment profile shows process abnormalities.  相似文献   

5.
We evaluate the performance of the Crosier's cumulative sum (C‐CUSUM) control chart when the probability distribution parameters of the underlying quality characteristic are estimated from Phase I data. Because the average run length (ARL) under estimated parameters is a random variable, we study the estimation effect on the chart performance in terms of the expected value of the average run length (AARL) and the standard deviation of the average run length (SDARL). Previous evaluations of this control chart were conducted while assuming known process parameters. Using the Markov chain and simulation approaches, we evaluate the in‐control performance of the chart and provide some quantiles for its in‐control ARL distribution under estimated parameters. We also compare the performance of the C‐CUSUM chart to that of the ordinary CUSUM (O‐CUSUM) chart when the process parameters are unknown. Our results show that large number of Phase I samples are required to achieve a quite reasonable performance. Additionally, the performance of the C‐CUSUM chart is found to be superior to that of the O‐CUSUM chart. Finally, we recommend the use of a recently proposed bootstrap procedure in designing the C‐CUSUM chart to guarantee, at a certain probability, that the in‐control ARL will be of at least the desired value using the available amount of Phase I data. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

6.
In this paper, an attribute‐variable control chart, namely, M‐ATTRIVAR, is introduced to monitor possible shifts in a vector of means. The monitoring starts using an attribute chart (classifying the units as approved or not using a gauge) and continues in such a way until a warning signal is given, shifting the control to a variable chart for the next sampling. If the variable chart does not confirm the warning, the monitoring returns to an attribute control. Otherwise, the monitoring remains with the variable chart. Whenever any of the charts (attribute or variable) signals an alarm, the control scheme triggers an alarm. The main advantage of this new proposal is the possibility of judging the state of the process only by the attribute chart most of the time (normally more economical and faster). The performance of the M‐ATTRIVAR control chart is compared versus the main competitor (T2 control chart) in terms of performance detection (out‐of‐control average run length) but also economically (average sampling cost). The M‐ATTRIVAR is always cheaper than T2, and in many scenarios, it detects quicker process shifts than the T2 control chart. A numerical example illustrates a practical situation.  相似文献   

7.
Control charts are widely used for process monitoring. They show whether the variation is due to common causes or whether some of the variation is due to special causes. To detect large shifts in the process, Shewhart‐type control charts are preferred. Cumulative sum (CUSUM) and exponentially weighted moving average (EWMA) control charts are generally used to detect small and moderate shifts. Shewhart‐type control charts (without additional tests) use only current information to detect special causes, whereas CUSUM and EWMA control charts also use past information. In this article, we proposed a control chart called progressive mean (PM) control chart, in which a PM is used as a plotting statistic. The proposed chart is designed such that it uses not only the current information but also the past information. Therefore, the proposed chart is a natural competitor for the classical CUSUM, the classical EWMA and some recent modifications of these two charts. The conclusion of this article is that the performance of the proposed PM chart is superior to the compared ones for small and moderate shifts, and its performance for large shifts is better (in terms of the average run length). Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

8.
In profile monitoring, control charts are constructed to detect any unanticipated departures from the statistical stability of product quality over time, where product quality is characterised by a function. In many situations, due to the characteristics of a system or an operation, certain process signals can be anticipated. Thus, when a kind of departure specifically feared is identified in advance, a directed process monitoring approach can be developed. Motivated by the monitoring of cylindrical surfaces, this paper focuses on quickly detecting the shape changes from a straight line to a second-order polynomial curve. Based on the hypothesis testing on the quadratic term, two directed control charts and a combined scheme are proposed to surveillance the sampled linear shape. The performance of our proposed methods is studied and compared with the alternative charts by numerical simulations. Simulation studies show that the two proposed directed charts are almost the same, and outperform the alternative methods in some cases. Moreover, the combined scheme is robust for all the parameter combinations.  相似文献   

9.
The Lindley process defined for the queuing file domain is equivalent to the cumulative sum (CUSUM) process used for break-point detection in process control. The maximum of the Lindley process, called local score, is used to highlight atypical regions in biological sequences, and its distribution has been established by different manners. I propose here to use the local score and also a partial maximum of the Lindley process over the immediate past to create control charts. Stopping time corresponds to the first time where the statistic achieves a statistical significance less than a given threshold α in ]0,1[, the instantaneous first error rate. The local score p value is computed using existing theoretical results. I establish here the exact distribution of the partial maximum of the Lindley process. Performance of the control charts is evaluated by Monte Carlo estimation of the average run lengths for an in-control process (ARL0) and for an out-of-control process (ARL1). I also use the standard deviation of the run length (SdRL) and the extra quadratic loss (EQL). Comparison with the usual and recent control charts present in the literature shows that the local score control chart outperforms the others with a much larger ARL0 and ARL1 smaller or of the same order. Many interesting openings exist for the local score chart: not only Gaussian model but also any of them, Markovian dependance of the data, both location and dispersion monitoring at the same time can be considered.  相似文献   

10.
In this paper, we propose four control charts for simultaneous monitoring of mean vector and covariance matrix in multivariate multiple linear regression profiles in Phase II. The proposed control charts include sum of squares exponential weighted moving average (SS‐EWMA) and sum of squares cumulative sum (SS‐CUSUM) for monitoring regression parameters and corresponding covariance matrix and SS‐EWMARe and SS‐CUSUMRe control charts for monitoring mean vector and covariance matrix of residual. Proposed methods are able to identify the out‐of‐control parameter responsible for shift. The performance of the proposed control charts is compared with existing method through Monte‐Carlo simulations. Moreover, the diagnostic performance of the proposed control charts is evaluated through simulation studies. The results show better performance of the proposed control charts rather than competing control chart. Finally, the applicability of the proposed control charts is illustrated using a real case of calibration application in the automotive industry. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

11.
High‐dimensional applications pose a significant challenge to the capability of conventional statistical process control techniques in detecting abnormal changes in process parameters. These techniques fail to recognize out‐of‐control signals and locate the root causes of faults especially when small shifts occur in high‐dimensional variables under the sparsity assumption of process mean changes. In this paper, we propose a variable selection‐based multivariate cumulative sum (VS‐MCUSUM) chart for enhancing sensitivity to out‐of‐control conditions in high‐dimensional processes. While other existing charts with variable selection techniques tend to show weak performances in detecting small shifts in process parameters due to the misidentification of the ‘faulty’ parameters, the proposed chart performs well for small process shifts in identifying the parameters. The performance of the VS‐MCUSUM chart under different combinations of design parameters is compared with the conventional MCUSUM and the VS‐multivariate exponentially weighted moving average control charts. Finally, a case study is presented as a real‐life example to illustrate the operational procedures of the proposed chart. Both the simulation and numerical studies show the superior performance of the proposed chart in detecting mean shift in multivariate processes. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

12.
In this work, we propose and study general inflated probability distributions that can be used for modelling and monitoring unusual count data. The considered models extend the well‐known zero‐inflated Poisson distribution because they allow the excess of values, other than zero. Four simple upper‐sided control schemes are considered for the monitoring of count data based on the proposed general inflated Poisson distributions, and their performance is evaluated under various out‐of‐control situations. The usefulness of the considered models and techniques is illustrated via two real‐data examples, while practical guidelines are provided as well. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

13.
Control charts have been broadly used for monitoring the process mean and dispersion. Cumulative sum (CUSUM) and exponentially weighted moving average (EWMA) control charts are memory control charts as they utilize the past information in setting up the control structure. This makes CUSUM and EWMA‐type charts good at detecting small disturbances in the process. This article proposes two new memory control charts for monitoring process dispersion, named as floating T ? S2 and floating U ? S2 control charts, respectively. The average run length (ARL) performance of the proposed charts is evaluated through a simulation study and is also compared with the CUSUM and EWMA charts for process dispersion. It is found that the proposed charts are better in detecting both positive as well as negative shifts. An additional comparison shows that the floating U ? S2 chart has slightly smaller ARLs for larger shifts, while for smaller shifts, the floating T ? S2 chart has better performance. An example is also provided which shows the application of the proposed charts on simulated datasets. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

14.
In some statistical process control (SPC) applications, it is assumed that a quality characteristic or a vector of quality characteristics of interest follows a univariate or multivariate normal distribution, respectively. However, in certain applications this assumption may fail to hold and could lead to misleading results. In this paper, we study the effect of non‐normality when the quality of a process or product is characterized by a linear profile. Skewed and heavy‐tailed symmetric non‐normal distributions are used to evaluate the non‐normality effect numerically. The results reveal that the method proposed by Kimtextitet al. (J. Qual. Technol. 2003; 35 :317–328) can be designed to be robust to non‐normality for both highly skewed and heavy‐tailed distributions. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

15.
Profile monitoring is the utilization of control charts for checking the stability of the quality of a product over time when the product quality is characterized by a function at each time point. Most existing control charts for monitoring profiles are based on the assumption that the observations within each profile are independent of each other, which is often invalid in practice. Successive measurements within profiles often exhibit spatial or serial correlation. This paper focuses on Phase II linear profile monitoring when within‐profile data are correlated. A Gaussian process model is used to describe the within‐profile correlation (WPC). Two Shewhart‐type multivariate control charts are proposed to monitor the linear trend term and the WPC separately in Phase II. Our proposed approaches are compared with alternative methods through numerical simulations in which different in‐control WPCs are considered. Simulation studies show that the proposed control charts are sensitive to changes in the linear trend term when the correlation is strong and effective in detecting large shifts in the WPC. Finally, an example is given to illustrate the implementation of our proposed control charts. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

16.
Autocorrelation or nonstationarity may seriously impact the performance of conventional Hotelling's T2 charts. We suggest modeling processes with multivariate autoregressive integrated moving average time series models and propose two model‐based monitoring charts. One monitors the predicted value and provides information about the need for mean adjustments. The other is a Hotelling's T2 control chart applied to the residuals. The average run length performance of the residual‐based Hotelling's T2 chart is compared with the observed data‐based Hotelling's T2 chart for a group of first‐order vector autoregressive models. We show that the new chart in most cases performs well. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

17.
In this paper, we propose control charts to monitor the Weibull shape parameter β under type II (failure) censoring. This chart scheme is based on the sample ranges of smallest extreme value distributions derived from Weibull processes. We suggest one‐sided (high‐side or low‐side) and two‐sided charts, which are unbiased with respect to the average run length (ARL). The control limits for all types of charts depend on the sample size, the number of failures c under type II censoring, the desired stable‐process ARL, and the stable‐process value of β. This article also considers sample size requirements for phase I in retrospective charts. We investigate the effect of c on the out‐of‐control ARL. We discuss a simple approach to choosing c by cost minimization. The proposed schemes are then applied to data on the breaking strengths of carbon fibers. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

18.
The in-control performance of Shewhart and S2 control charts with estimated in-control parameters has been evaluated by a number of authors. Results indicate that an unrealistically large amount of Phase I data is needed to have the desired in-control average run length (ARL) value in Phase II. To overcome this problem, it has been recommended that the control limits be adjusted based on a bootstrap method to guarantee that the in-control ARL is at least a specified value with a certain specified probability. In this article we present simple formulas using the assumption of normality to compute the control limits and therefore, users do not have to use the bootstrap method. The advantage of our proposed method is in its simplicity for users; additionally, the control chart constants do not depend on the Phase I sample data.  相似文献   

19.
Shewhart, exponentially weighted moving average (EWMA), and cumulative sum (CUSUM) charts are famous statistical tools, to handle special causes and to bring the process back in statistical control. Shewhart charts are useful to detect large shifts, whereas EWMA and CUSUM are more sensitive for small to moderate shifts. In this study, we propose a new control chart, named mixed CUSUM‐EWMA chart, which is used to monitor the location of a process. The performance of the proposed mixed CUSUM‐EWMA control chart is measured through the average run length, extra quadratic loss, relative average run length, and a performance comparison index study. Comparisons are made with some existing charts from the literature. An example with real data is also given for practical considerations. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

20.
In certain cases, the quality of a process or a product can be effectively characterized by two or more multiple linear regression profiles in which response variables are correlated. This structure can be modeled as multivariate multiple linear regression profiles. When linear profiles are monitored separately, then correlation between response variables is ignored and misleading results could be expected. To overcome this problem, the use of methods that consider the multivariate structure between response variables is inevitable. In this paper, we propose four methods to monitor this structure in Phase II. The performance of the methods is compared through simulation studies in terms of the average run length criterion. Furthermore, a method based on likelihood ratio approach is developed to determine the location of shifts and a numerical simulation is used to evaluate the performance of the proposed method. Finally, the use of the methods is illustrated by a numerical example. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号