首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Streams and rivers constitute a dense network with a large interface to the surrounding landscape and are thus highly susceptible to anthropogenic pressures related to land‐use activities in adjacent riparian and upland areas. In the present study, we investigated the influence of catchment characteristics on potential propagule and species recruitment from sediment in lowland stream ecosystems. We tested the following hypotheses: (1) catchment characteristics affect species recruitment from stream sediment in both stream and riparian habitats and (2) recruitment of species associated with undisturbed fen‐meadow habitats is higher in places with natural vegetation in the riparian zones. A large number of wetland species emerged from the stream sediment and sediment recruitment and therefore can act as an important dispersal corridor for common species in stream ecosystems. The recruited propagules were dominated by terrestrial species, but amphibious and aquatic species also appeared, particularly in the artificial stream channels. These included among others species within the genera Ranunculus sp., Callitriche sp. and Potamogeton sp. The large between‐site differences in land‐use characteristics in the riparian zones of the studied stream reaches, both locally and along upstream reaches, were not reflected in species recruitment from the stream sediments. Thus, most recruited species were common and widely distributed, and they were dominated by species with ruderal and competitive life history strategies, whereas only few species associated with fen‐meadow vegetation were recruited. From these findings, we infer not only that hydrochorous dispersal of species can be a potential efficient dispersal vector in agricultural landscapes but also that limitations can exist as to which species can be recruited. We suggest that further studies are performed to elucidate this issue further. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

2.
Allochthonous nutrients and carbon are recognized as dominant controls on biogeochemistry of low-order streams. In some systems, potamodromous fish may provide a complementary source of material as they deliver lake-derived materials to spawning streams. This study examines nutrient and carbon inputs from terrestrial ecosystems and migratory fishes to streams in undeveloped watersheds in northern Michigan, USA. We compared watershed and riparian area, slope, and landcover to nutrient concentrations at 26 sites, as well as whole-stream metabolism at 5 sites. Despite low levels of agricultural land use (0–3%), agriculture had the largest influence on stream chemistry as indicated by higher dissolved organic carbon (DOC), ammonium, silica, and chloride concentrations at the watershed level, and increased DOC and chloride at the riparian level. Ecosystem respiration and net primary production increased with watershed and riparian area, and the proportion of managed forest. To quantify inputs from fish, we monitored the spawning migrations of white (Catostomus commersonii) and longnose (C. catostomus) suckers at one site, and measured nutrients and stream metabolism above and below an impassable dam. Nutrient concentrations were uniformly low and did not increase during the fish migration; however, temporal shifts in stream metabolism during sucker migration suggest that fish influenced respiration, presumably by providing high-quality carbon and bioavailable nutrients. We conclude that both watershed land use and fish migrations provide important sources of allochthonous material to these oligotrophic streams. Recognizing the bi-directional nature of allochthonous inputs is important for understanding controls on ecosystem functioning in low-order streams.  相似文献   

3.
Data from 10 sampling sites along the River Njoro are used to examine the contribution of nutrients from upstream land uses draining each of the sampling sites. The data also are used to assess whether both the proportion of land uses and the size of the subwatersheds account for the variability in water quality in the River Njoro watershed. Geographical Information System analysis was used to determine the spatial distribution of land‐cover types and subwatersheds contributing run‐off to the sampling sites in the River Njoro. Standard Digital Elevation Model‐based routines were used to establish the watershed area contributing run‐off to each sampling site. Water and sediment samples were collected for chemical analysis, and the nutrient levels were related to the upstream land‐use types and the size of the subwatersheds. The mid‐stream portion of the River Njoro (near Egerton University) accounts for the highest nutrient contributions. The percentage contribution is magnified by additions from industrial, human settlements and agricultural land uses around the University. There is a significant decrease in nutrient levels downstream, however, indicating natural purification as the river flows through an area of large‐scale farming with intense, well‐preserved riparian and in‐stream vegetation. Steep slopes of the land upstream of Egerton University enhance erosion and nutrient losses from those subwatersheds. Mixed small‐scale agricultural and bare lands contribute over 55% of the phosphorus load to the upper and mid‐reaches of the River Njoro. The size of the subwatershed accounts for about 53% of the variability in the soluble phosphorus in the river. The land‐use subwatershed proportions are important for characterizing and modelling water quality in the River Njoro watershed. Upland land uses are as important as near‐stream land uses. We suggest that conservation of intact riparian corridor along the river and its tributaries contributes significantly to natural purification processes and recovery of the ecological integrity of the River Njoro ecosystem.  相似文献   

4.
Enthusiasm for using beaver dam analogues (BDAs) to restore incised channels and riparian corridors has been increasing. BDAs are expected to create a similar channel response to natural beaver dams by causing channel bed aggradation and overbank flow, which subsequently raise water tables and support vegetation growth. However, lack of funding for monitoring projects post‐restoration has limited research on whether BDAs actually cause expected channel change in the Front Range and elsewhere. Geomorphic and hydrologic response to BDAs was monitored in two watersheds 1 year post‐restoration. BDAs were studied at Fish Creek, a steep mountainous catchment, and Campbell Creek, a lower gradient piedmont catchment from May to October 2018. At each restoration site, the upstream‐ and downstream‐most BDAs were chosen for intensive study in comparison with unrestored reference reaches. Monitoring focused on quantifying sediment volumes in BDA ponds and recording changes to stream stage and riparian groundwater. Despite differences in physical basin characteristics, BDA pools at both sites stored similar volumes of sediment and stored more sediment than reference pools. Sediment storage is positively correlated to BDA height and pool surface area. However, BDAs did not have a significant influence on shallow groundwater. The lack of groundwater response proximal to BDAs could indicate that local watershed factors have a stronger influence on groundwater response than restoration design 1 year post‐restoration. Systematic, long‐term studies of channel and floodplain response to BDAs are needed to better understand how BDAs will influence geomorphology and hydrology.  相似文献   

5.
Suitable thermal conditions in streams are necessary for fish and predictions of future climate changes infer that water temperatures may regularly exceed tolerable ranges for key species. Riparian woodland is considered as a possible management tool for moderating future thermal conditions in streams for the benefit of fish communities. The spatial and temporal variation of stream water temperature was therefore investigated over 3 years in lowland rivers in the New Forest (southern England) to establish the suitability of the thermal regime for fish in relation to riparian shade in a warm water system. Riparian shade was found to have a marked influence on stream water temperature, particularly in terms of moderating diel temperature variation and limiting the number of days per year that maximum temperatures exceeded published thermal thresholds for brown trout. Expansion of riparian woodland offers potential to prevent water temperature exceeding incipient lethal limits for brown trout and other fish species. A relatively low level of shade (20–40%) was found to be effective in keeping summer temperatures below the incipient lethal limit for brown trout, but ca. 80% shade generally prevented water temperatures exceeding the range reported for optimum growth of brown trout. Higher levels of shade are likely to be necessary to protect temperature‐sensitive species from climate warming. © Crown copyright 2010.  相似文献   

6.
This study monitored stream temperatures over two hydrological years at various nested scales within the large, unregulated river Dee catchment (North East Scotland). These scales were (i) the whole catchment (11 sites along main stem Dee); (ii) the tributary (single sites in main tributaries); (iii) the Girnock (five sites in one subcatchment); and (iv) the reach (26 points across single reach). The aim was to characterize the thermal regime of all locations and compare the magnitude of variation between each scale. The controls on this variation were assessed via a multiple linear regression model using Geographic Information System‐derived catchment data. Temperatures were collected at 15‐min resolution and for further analysis and discussion combined to daily means. At the catchment and subcatchment scales, a west to east gradient in mean and minimum temperatures was observed, largely paralleling changes in altitude. Temperature differences between subcatchments were generally greater than between the sites along the main stem of the Dee. Differences between tributaries reflected differences in their morphology and land use. However, some tributaries had similar thermal regimes, despite different catchment and riparian characteristics. Subcatchment differences in thermal regimes of one of the tributaries corresponded to riparian vegetation reduced diurnal variability in sections dominated by broadleaf woodland. Compared with the larger scales, reach differences in thermal regime were small (e.g. mean temperatures of riffle, pool and margin habitats were within 0.3°C). The most noticeable difference was in relation to the point samples within the backwater area, which has a more constant thermal regime, most probably reflecting its groundwater source. The regression analysis indicated that monthly mean temperatures can be predicted well using elevation and catchment area. Forest cover was a significant explanatory variable during the summer months. However, some of the empirical temperature data from the Dee indicate that similar thermal regimes can result from different physical controls and processes that have important implications for the extrapolation of such predictive models. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

7.
8.
Mechanically reshaping stream banks is a common practice to mitigate bank erosion in streams that have been extensively channelised and lowered for land drainage. A common perception regarding this activity is that fish populations will be largely unaffected, at least in the short term, because the low‐flow wetted channel remains undisturbed. However, the response of fish populations to this practice has rarely been quantitatively evaluated. Using a Before‐After‐Control‐Impact design, we assessed fish community responses to a catchment‐scale bank reshaping event in a fourth‐order low‐gradient stream that drains an intensive agricultural landscape. Quantitative electric fishing and fish habitat data were collected 2 months before and annually for 3 years after the reshaping event. After reshaping, deposited fine sediment levels increased in impact reaches, and there was a significant reduction in anguillid eel biomass (by 49%). In contrast, densities of obligate benthic gobiid bully species increased significantly in impact reaches—potentially due to reduced predation pressure from eels. Three years after bank reshaping, fish community structure had largely returned to its preimpact state in the reshaped areas. Our results suggest that, even in highly modified stream channels, further bank modification can reduce instream habitat quality and displace eels for at least 1 year. Managers should endeavour to use bank erosion control measures that conserve bank‐edge cover, especially in streams with populations of anguillid eels, because these fish are declining globally.  相似文献   

9.
Urban and agricultural land uses can alter the natural hydrologic conditions of streams and rivers and often degrade water quality. In the Ozark Highlands of the mid‐southern United States, the climate, topography, soil properties, karst limestone geology, agricultural practices and rapid urbanization make water quality of particular concern due to the increased potential for water quality degradation by contaminant leaching to groundwater and runoff to surface waters. The objective of this study was to evaluate the effects of season (i.e. dry/cool and wet/warm) and riparian land use (i.e. urban, grazed pasture, ungrazed pasture, wetland, cultivated agriculture and grassland) on surface water quality in a first‐order stream within a diverse agricultural watershed in the Ozark Highlands. Water samples were collected twice a month within each land use during base‐flow conditions from October 2006 through October 2007. Samples were also collected periodically during storm‐flow conditions from October 2006 through December 2007. The greatest in‐stream pH was adjacent to the grazed pasture. In‐stream NO3‐N concentrations were greatest adjacent to the cultivated agriculture and grassland during the dry/cool season (i.e. October 2006 to March 2007) and averaged 2.67 mg L?1. In‐stream soluble reactive P (SRP) concentrations were greatest adjacent to the grassland during the wet/warm season (i.e. April 2007 to October 2007) and averaged 0.81 mg L?1. Concentrations of SRP, K, Mg and Zn were greater during storm‐ than base‐flow conditions and in‐stream As concentrations frequently exceeded 0.01 mg L?1. Discharge and in‐stream NH4‐N concentrations were unaffected by land use or season and averaged 0.003 m3 s?1 and 0.10 mg L?1, respectively, across all land uses and seasons. Results of this study clearly demonstrate the significant effect of adjacent land use on in‐stream water quality of a first‐order stream in a diverse agricultural watershed and highlight the importance of managing upstream land use in order to regulate downstream water quality. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

10.
Headwater streams can constitute up to 80% of river channel length and are vulnerable to anthropogenic pressures due to their high connectivity to adjacent land, large relative catchment size and low dilution capacity. In these environments, unrestricted cattle access is a potentially significant cause of water quality deterioration, resulting from increases in stream bank erosion, riparian damage and sediment deposition among others. Several studies have reported improvements in the physico-chemical and hydromorphological conditions of streams following the elimination of cattle access; few, however, have focussed on the ecological impacts of such management practices. Here, such impacts are assessed. The study explores the short-term effects of cattle exclusion by comparing habitat conditions, sediment deposition and instream macroinvertebrate communities upstream and downstream of cattle access points prior to, and 1 year following exclusion via fencing. The long-term effects are also measured by reassessing a small stream catchment entirely fenced off from cattle access in 2008 under a dedicated management plan. In the short term, cattle exclusion led to a reduction in deposited sediment downstream of cattle access points and a related homogenisation of macroinvertebrate community structure between upstream and downstream of cattle access points. Increased abundances of specific indicator taxa (Ancylus fluviatilis, Glossosomatidae and Elmidae) in the fenced catchment following 9 years of exclusion highlight the long-term ecological benefits of such mitigation practices. These findings highlight the importance of incentivised agri-environment measures in reducing the negative impacts of cattle access to vulnerable aquatic ecosystems.  相似文献   

11.
Dams are ubiquitous in coastal regions and have altered stream habitats and the distribution and abundance of stream fishes in those habitats by disrupting hydrology, temperature regime and habitat connectivity. Dam removal is a common restoration tool, but often the response of the fish assemblage is not monitored rigorously. Sedgeunkedunk Stream, a small tributary to the Penobscot River (Maine, USA), has been the focus of a restoration effort that includes the removal of two low‐head dams. In this study, we quantified fish assemblage metrics along a longitudinal gradient in Sedgeunkedunk Stream and also in a nearby reference stream. By establishing pre‐removal baseline conditions and associated variability and the conditions and variability immediately following removal, we can characterize future changes in the system associated with dam removal. Over 2 years prior to dam removal, species richness and abundance in Sedgeunkedunk Stream were highest downstream of the lowest dam, lowest immediately upstream of that dam and intermediate farther upstream; patterns were similar in the reference stream. Although seasonal and annual variation in metrics within each site was substantial, the overall upstream‐to‐downstream pattern along the stream gradient was remarkably consistent prior to dam removal. Immediately after dam removal, we saw significant decreases in richness and abundance downstream of the former dam site and a corresponding increase in fish abundance upstream of the former dam site. No such changes occurred in reference sites. Our results show that by quantifying baseline conditions in a small stream before restoration, the effects of stream restoration efforts on fish assemblages can be monitored successfully. These data set the stage for the long‐term assessment of Sedgeunkedunk Stream and provide a simple methodology for assessment in other restoration projects. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

12.
This study investigated the effects of culvert replacement design on fish habitat and fish weight by comparing substrate diversity and weight at three stream simulation (SS)‐design and three bankfull and backwater (BB)‐design sites on the Chequamegon‐Nicolet National Forest, Wisconsin. Stream channel cross‐sections, Wolman substrate particle counts, and single‐pass backpack electro‐fishing survey data were used to quantify fish habitat and fish weight in 50‐m upstream and downstream sample reaches at each site. We applied generalized linear mixed models to test the hypothesis that substrate size and fish weight did not differ according to stream‐crossing design type (SS or BB) and location (upstream or downstream). Substrate particle sizes were significantly greater upstream of the stream crossing when compared to downstream of the stream crossing at both SS and BB sites for riffles and pools. Substrate particle sizes were also significantly greater upstream of BB sites when compared to upstream of SS sites. Results of this study indicated statistically greater individual fish weights upstream of SS‐design sites in comparison to upstream of BB‐design sites in first‐ to third‐order low gradient streams. These results suggested that the SS‐design approach appears to be more effective at transporting sediment downstream, and illustrated the value of using fish weight as an indicator of biological success for stream‐crossing designs. Published 2017. This article is a U.S. Government work and is in the public domain in the USA. Published 2017. This article is a U.S. Government work and is in the public domain in the USA.  相似文献   

13.
Efforts to conserve stream and river biota could benefit from tools that allow managers to evaluate landscape‐scale changes in species distributions in response to water management decisions. We present a framework and methods for integrating hydrology, geographic context and metapopulation processes to simulate effects of changes in streamflow on fish occupancy dynamics across a landscape of interconnected stream segments. We illustrate this approach using a 482 km2 catchment in the southeastern US supporting 50 or more stream fish species. A spatially distributed, deterministic and physically based hydrologic model is used to simulate daily streamflow for sub‐basins composing the catchment. We use geographic data to characterize stream segments with respect to channel size, confinement, position and connectedness within the stream network. Simulated streamflow dynamics are then applied to model fish metapopulation dynamics in stream segments, using hypothesized effects of streamflow magnitude and variability on population processes, conditioned by channel characteristics. The resulting time series simulate spatially explicit, annual changes in species occurrences or assemblage metrics (e.g. species richness) across the catchment as outcomes of management scenarios. Sensitivity analyses using alternative, plausible links between streamflow components and metapopulation processes, or allowing for alternative modes of fish dispersal, demonstrate large effects of ecological uncertainty on model outcomes and highlight needed research and monitoring. Nonetheless, with uncertainties explicitly acknowledged, dynamic, landscape‐scale simulations may prove useful for quantitatively comparing river management alternatives with respect to species conservation. Published 2012. This article is a U.S. Government work and is in the public domain in the USA.  相似文献   

14.
Stream temperatures are critically important to aquatic ecology, especially cold‐water fish such as salmonids. Stream temperatures are influenced by multiple factors, including local climate, solar radiation on the stream channel, stream discharge volume and groundwater contributions. The Heat Source hydrodynamic and thermodynamic numerical model was used to evaluate temperatures in three stream reaches in the Navarro River watershed, California, USA. The model was calibrated and validated for summer 2015 conditions and then applied to scenarios that address changes in air temperatures, riparian forest cover and stream discharge. Modelling results indicate that stream temperatures are sensitive to changes in air temperatures and riparian forest cover and that higher discharge volume mitigates those impacts. Modelled stream maximum weekly average temperatures (MWAT) increased by 1.5–2.3°C in response to an air temperature increases of 3.5°C under low flow conditions (drought) but by only 0.9–2.0°C under moderate flow. Complete removal of riparian forest in a large‐scale forest fire would increase MWAT by 2.2–5.9°C in low discharges and by 1.0–4.4°C under moderate discharge. Riparian zone reforestation would decrease MWATs by less than 0.8°C, a modest change reflecting high existing shade on the modelled stream reaches. Comparison of identical climate and land cover change scenarios under low and moderate discharge conditions reveals that efforts to conserve stream discharge volume could be an effective mechanism to mitigate stream temperature increases. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

15.
This study was undertaken as part of a long‐term investigation of the ability of high‐level fishways to rehabilitate fish communities upstream of high dams. Effects of Tallowa Dam on fish of the Shoalhaven River system were studied by comparing species abundances, population size‐structures and the structure of fish communities above and below the dam. Fish were sampled twice yearly for two years at 12 sites throughout the catchment. Species richness was greater downstream of the dam, with 21 species, compared to 16 species upstream of the dam. Ten diadromous species are believed to be extinct above the dam because of obstructed fish passage. Another four migratory species capable of climbing the wall have reduced abundances upstream. Accumulations of fish, particularly juveniles, directly below the dam were evident for nine species. Fish communities upstream and downstream of the dam differed significantly, identifying the dam as a significant discontinuity in the available fish habitats within the system. Historical evidence suggests that before the dam was built, fish communities from the tidal limit to at least 130 m elevation were largely continuous. This study has demonstrated that Tallowa Dam is a major barrier to fish migration and has had adverse effects on the biodiversity of the system. The creation of Lake Yarrunga by Tallowa Dam has resulted in distinctive fish communities in riverine and lacustrine habitats. Populations of five species that occur both upstream and downstream of the dam have developed differences in their size structures. The fish community downstream of the dam also differs from its historical condition because of the virtual disappearance of Australian grayling (Prototroctes maraena) and the establishment of non‐native species. A high‐level fishway is now being designed for the dam to restore fish passage. Data from this study will serve as a baseline against which to assess the effectiveness of the fishway in rehabilitating fish communities of the river system. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

16.
Reservoirs are important components of modern aquatic ecosystems that have negative impacts on native aquatic biota both up‐ and downstream. We used a landscape‐scale geographic information system (GIS) approach to quantify the spatial effects of 19 large reservoirs on upstream prairie fish assemblages at 219 sites in Kansas, USA. We hypothesized that fish assemblage structure would vary with increasing distance from a reservoir and that the abundance of reservoir fishes in upstream reaches would decline with distance from a reservoir. Ordination of sample sites showed variation in fish assemblage structure occurred primarily across river basins and with stream size. Variance partitioning of a canonical ordination revealed that the pure effect of reservoir distance explained a small but significant (6%; F = 4.90, P = 0.002) amount of variability in fish assemblage structure in upstream reaches. Moreover, reservoir species catch per unit of effort (CPUE) significantly declined with distance from a reservoir, but only in fourth‐ and fifth‐ order streams (r2 = 0.32, P < 0.001 and r2 = 0.49, P < 0.001, respectively). Finally, a multivariate regression model including measures of stream size, catchment area, river basin, and reservoir distance successfully predicted CPUE of reservoir species at sites upstream of Kansas reservoirs (R2 = 0.45, P < 0.001). Overall, we found significant upstream effects of reservoirs on Kansas stream fish assemblages, which over time has led to a general homogenization of fish assemblages because of species introductions and extirpations. However, characteristic reservoir species are present throughout these systems and the importance of spatial proximity to reservoirs is probably dependent on the availability of suitable habitat (e.g. deep pools) in these tributary streams. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

17.
Benthic macroinvertebrates were quantitatively sampled from thirty sites along two river systems in southwestern Australia, and patterns in community structure related to physical and chemical parameters. Classification and ordination showed a major separation between upland and lowland sites, irrespective of river system. The change in benthic community structure reflected the rapid transition in geomorphology, stream hydraulics, and water chemistry as upland forested streams exit the Darling Escarpment to give rise to open rivers, disturbed by agriculture and urban development. One upland site was clearly influenced by a storage reservoir immediately upstream and consistently grouped with lowland sites; evidence of recovery was apparent at sites downstream. The remaining upland sites were separated on the basis of catchment; this was most likely related to stream flow permanence than any inherent catchment difference. A seasonal pattern was also detected for upland sites. Samples taken in summer or autumn were distinct from those taken in winter or spring. In constrast, lowland sites could not be separated into distinct groups on the basis of season or drainage basin. The presence of cosmopolitan and tolerant species with a high likelihood of dispersal, together with the homogeneous nature of the sites, may account for the high degree of similarity among benthic communities of sites along the lowland rivers. Much of the spatial and temporal variation in benthic community structure was explained by physical characteristics of the sites. Prediction of community type using chemical data alone was poor, however, this success could be improved by combining physical and chemical data, particularly for upland sites. The poor predictive success using chemical data was likely the result of the abrupt changes in the physical nature of the streams, and the absence of large spatial differences in water quality. The successful predictive relatioship betweenm benthic community structure and physical data will enable water management authorities to detect subsequent changes in water quality in these two river systems. The predictive power of the model could be assessed in adjacent river systems for which the patterns in benthic community structure are as yet unknown.  相似文献   

18.
Nonwadeable rivers are unique ecosystems that support high levels of aquatic biodiversity, yet they have been greatly altered by human activities. Although riverine fish assemblages have been studied in the past, we still have an incomplete understanding of how fish assemblages respond to both natural and anthropogenic influences in large rivers. The purpose of this study was to evaluate associations between fish assemblage structure and reach‐scale habitat, dam, and watershed land use characteristics. In the summers of 2011 and 2012, comprehensive fish and environmental data were collected from 33 reaches in the Iowa and Cedar rivers of eastern‐central Iowa. Canonical correspondence analysis (CCA) was used to evaluate environmental relationships with species relative abundance, functional trait abundance (e.g. catch rate of tolerant species), and functional trait composition (e.g. percentage of tolerant species). On the basis of partial CCAs, reach‐scale habitat, dam characteristics, and watershed land use features explained 25.0–81.1%, 6.2–25.1%, and 5.8–47.2% of fish assemblage variation, respectively. Although reach‐scale, dam, and land use factors contributed to overall assemblage structure, the majority of fish assemblage variation was constrained by reach‐scale habitat factors. Specifically, mean annual discharge was consistently selected in nine of the 11 CCA models and accounted for the majority of explained fish assemblage variance by reach‐scale habitat. This study provides important insight on the influence of anthropogenic disturbances across multiple spatial scales on fish assemblages in large river systems. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

19.
为研究自然降雨条件下紫色土地块-小流域尺度农业非点源氮素随径流流失的特征,采用野外径流观测法,对2011年川中某紫色土丘陵区12次典型降雨产流事件进行了监测,测定径流量及径流中氮素浓度与负荷变化情况。结果表明:旱地流失负荷值远大于林地流失负荷值,且旱地氮素流失主要集中在施肥后的初期降水事件中,占流失总量的76.1%;壤中流氮素平均浓度为0.98~54.1mg/L;旱地氮素迁移有显著月变化特征,明显受到当地施肥习惯和汛期降雨量影响。陈家湾农林复合小流域氮素迁移特点分析表明,该小流域受到多种土地利用类型影响,径流氮素浓度波动范围不大;但在大雨降雨事件中,浓度在降雨后期有所升高,体现了"末期冲刷效应"。研究结果可为调控长江上游紫色土丘陵区氮素流失提供参考。  相似文献   

20.
In river systems, high‐head dams may increase the distance‐decay of fish community similarity by creating nearly impermeable dispersal barriers to certain species from upstream reaches. Substantial evidence suggests that migratory species are impacted by dams, and most previous studies in stream/river networks have focused on small streams and headwaters. Here, we assess whether a high‐head dam (Lock and Dam 19; LD 19) on a large river, the Upper Mississippi River (UMR), substantially alters fish community structure relative to variability expected to occur independent of the dam's effect as a fish dispersal barrier. Using fish catch per unit effort data, we modelled the distance‐decay function for the UMR fish community and then estimated the similarity that would be expected to occur across LD19 and compared it with measured similarity. Measured similarity in the fish community above and below LD19 was close to the expected value based on the distance‐decay function, suggesting LD19 does not create an abrupt transition in the fish community. Although some migratory fish species no longer occur above LD19 (e.g., skipjack herring, Alosa chrysochloris), these species do not occur in high abundance below the dam and so do not drive variation in fish community structure. Instead, much of the variation in species structure is driven by the loss/gain of species across the latitudinal gradient. Lock and Dam 19 does not appear to be a clear transition point in the river's fish community, although it may function as a meaningful barrier for particular species (e.g., invasive species) and warrant future attention from a management perspective.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号