首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Here, a novel ternary semi interpenetrating polymer networks (semi IPNs) have been synthesized. An effective role to develop mechanically strong polymeric materials has been through the preparation of interpenetrating polymer networks (IPNs). The highly swelling superabsorbent semi IPNs were prepared by introducing poly(ethylene glycol), (PEG) into an acrylamide/sodium acrylate, (AAm/SA) hydrogels. For swelling characterization, swelling experiments were performed in water at 25 °C, gravimetrically. Water uptake and dye sorption properties of AAm/SA hydrogels and AAm/SA/PEG semi IPNs were investigated as a function of chemical composition of the hydrogels. AAm/SA hydrogels and AAm/SA/PEG semi IPNs were used in experiments on sorption of water-soluble cationic dye such as “Janus Green B” (JGB). For sorption of JGB into AAm/SA hydrogels and AAm/SA/PEG semi IPNs were studied by batch sorption technique at 25 °C. For the analysis of sorption mechanism and for calculation of some binding parameters of JGB from aqueous solutions, some linearization methods such as Klotz, Scatchard, and Langmuir linearization methods have been used.  相似文献   

2.
Semi-interpenetrating polymer network (semi IPN) hydrogels of poly(ethylene glycol; PEG) were prepared as a water adsorbent for dye (Janus Green B) sorption. For this, PEG and copolymer of acrylamide/sodium methacrylate (AAm/SMA) were prepared by polymerization of aqueous solution of acrylamide (AAm), sodium methacrylate (SMA) using ammonium persulfate (APS)/N,N,N′,N′-tetramethylethylenediamine (TEMED) as redox initiating pair in presence of PEG and poly(ethylene glycol)dimethacrylate (PEGDMA) as crosslinker. FTIR spectroscopy was used to identify the presence of different repeating units in the semi IPNs. Some swelling and diffusion characteristics were calculated for different semi IPNs and hydrogels prepared under various formulations. Water uptake and dye sorption properties of AAm/SMA hydrogels and AAm/SMA/PEG semi IPNs were investigated as a function of chemical composition of the hydrogels. Janus Green B have used in sorption studies. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

3.
Uranyl ion (UO22+) sorption properties of polyelectrolyte composite hydrogels made by the polymerization of acrylamide (AAm) with 2‐acrylamido‐2‐methyl‐1‐propanesulfonic acid (AMPS) and clay such as bentonite (Bent) were investigated as a function of composition to find materials with swelling and uranyl ion sorption properties. Highly swollen AAm/AMPS hydrogels and AAm/AMPS/Bent composite hydrogels were prepared by free radical solution polymerization in aqueous solutions of AAm with AMPS as co‐monomer and two multifunctional crosslinkers such as ethylene glycol dimethacrylate (EGDMA) and 1,4 butanediol dimethacrylate (BDMA). Swelling experiments were performed in water at 25°C, gravimetrically. The influence of AMPS content in hydrogels was examined. Uranyl ion adsorption from aqueous solutions was studied by batch sorption technique at 25°C. The effect of uranyl ion concentration and mass of AMPS on the uranyl ion adsorption were examined. Finally, adsorption capacity (the amount of sorbed uranyl ion per gram of dry hydrogel) (q) was calculated to be 0.67 × 10−3–2.11 × 10−3 mol uranyl ion per gram for the hydrogels. Removal effiency of uranyl ions (RE%) was changed range 9.05–29.92%. The values of partition ratio (Kd) of uranyl ions was calculated to be 0.10–0.43 for AAm/AMPS hydrogels and AAm/AMPS/Bent composite hydrogels, respectively. POLYM. COMPOS., 2011. © 2011 Society of Plastics Engineers  相似文献   

4.
Highly swollen acrylamide (AAm)/sodium acrylate (SA) hydrogels were prepared by free radical solution polymerization in aqueous solution of AAm with SA as comonomer and two multifunctional crosslinkers such as glutaraldehyde (GL) and divinylbenzene (DVB). Water absorption and percentage swelling were determined gravimetrically. The influence of SA content in hydrogels was examined. Percentage swelling ratio of AAm/SA hydrogels was increased up to 2946–12,533%, while AAm hydrogels swelled up to 1326–1618%. The values of equilibrium water content of the hydrogels are between 0.9297–0.9921. Diffusion behavior was investigated. Water diffusion into hydrogels was found to be non‐Fickian in character. Adsorption properties of AAm/SA hydrogels in aqueous thionin solution have been investigated. Finally, the amount of sorbed thionin per gram of dry hydrogel (qe) was calculated to be 4.81 × 10?6?11.69 × 10?6 mol thionin per gram for hydrogels. Removal efficiency (RE%) of the AAm/SA hydrogels was changed range 37.03–68.82%. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007  相似文献   

5.
Interpenetrating polymer networks (IPN), either semi‐IPN (s‐IPN) or full IPN, based on a natural polymer tannic acid (TA) and synthetic poly(acrylamide) (p(AAm)) were prepared by incorporation of TA during p(AAm) hydrogel film preparation with and without crosslinking of TA simultaneously. The synthesis of p(AAm/TA) s‐IPN and IPN hydrogels with different amounts of TA were prepared by concurrent use of redox polymerization and epoxy crosslinking. The p(AAm)‐based hydrogels were completely degraded at 37.5°C within 9 and 2 days at pHs 7.4 and 9, respectively. Biocompatibility of p(AAm), s‐IPN, and IPN were tested with WST assay and double staining, they had 75% cell viability up to almost 20 μg mL?1 concentration against L929 fibroblast cell. Antioxidant properties of IPN and s‐IPN hydrogels were investigated with FC and ABTS? methods. Antimicrobial properties of TA‐containing s‐IPN, and IPN hydrogels were determined against three common bacterial strains, Escherichia coli ATCC 8739, Staphylococcus aureus ATCC 6538, and Bacillus subtilis ATCC 6633, and it was found that p(AAm/TA)‐based s‐IPN and IPN hydrogels are effective antimicrobial and antioxidant materials. Moreover, almost up to day‐long linear TA release profiles were obtained from IPN and s‐IPN hydrogels in phosphate buffer solution at pH 7.4 at 37.5°C. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41876.  相似文献   

6.
《分离科学与技术》2012,47(3):489-499
A series of novel semi-interpenetrating polymer networks hydrogels composed of poly(ethylene glycol) and random copolymer of acrylamide/sodium methacrylate were prepared by polymerization of aqueous solution of acrylamide, sodium methacrylate using ammonium persulphate/N,N,N′,N′-tetramethylethylenediamine as a redox-initiating pair in the presence of poly(ethylene glycol) and poly(ethylene glycol)diacrylate as crosslinker. Fourier Transform Infrared spectroscopy was used to identify the presence of different repeating units in the semi IPNs. Water uptake and dye-sorption properties of acrylamide/sodium methacrylate hydrogels and acrylamide/sodium methacrylate/poly(ethylene glycol) semi IPNs were investigated as a function of chemical composition of the hydrogels. Cationic dye, Janus Green B have been used in sorption studies as a model molecule. This study has given the quantitative information on the swelling and sorption characteristic of acrylamide/sodium methacrylate hydrogels and acrylamide/sodium methacrylate/poly(ethylene glycol) semi IPNs in many potential applications.  相似文献   

7.
A semi-interpenetrating network (semi-IPNs) hydrogel, composed of acrylamide (AAm) with 2-acrylamido-2-methyl-1-propanesulfonic acid (AMPS) as co-monomer, with poly(ethylene glycol) (PEG) and two multifunctional cross-linkers such as 1,4-butanediol dimethacrylate (BDMA), and trimethylolpropane triacrylate (TMPTA) was prepared. AAm/AMPS hydrogels and AAm/AMPS/PEG semi-IPNs were synthesized by free radical solution polymerization. Swelling experiments were performed in water at 25°C, gravimetrically. For sorption of Toluidin Blue (Basic Blue 17, TB) into AAm/AMPS hydrogels and AAm/AMPS/PEG semi-IPNs was studied by batch sorption technique at 25°C. Dye removal capacity, removal effiency and partition coefficient of the hydrogels was investigated.  相似文献   

8.
Semi-IPN hydrogels based gelatin (GEL) and/or poly (ethylene glycol) (PEG) were prepared with acrylamide (AAm) and 4-styrenesulfonic acid sodium salt, (SSS) as a water adsorbent for cationic dye (methyl violet, MV) sorption. For this, chemically crosslinked copolymer of AAm/SSS copolymer with GEL and/or PEG were prepared by polymerization of aqueous solution of AAm and SSS using ammonium persulfate (APS)/N,N,N′,N′-tetramethylethylenediamine (TEMED) as redox initiating pair in presence of poly(ethylene glycol)diacrylate (PEGDA) as crosslinker. FT-IR analysis was used to identify the presence of different repeating units in the semi-IPNs. Surface morphology was characterized by scanning electron microscopy (SEM). Some swelling and diffusion characteristics were calculated for different semi-IPNs and hydrogels prepared under various formulations. Water uptake, and dye sorption properties of the crosslinked polymeric systems such as AAm/SSS, AAm/GEL/SSS, AAm/PEG/SSS and AAm/GEL/PEG/SSS hydrogel systems were investigated as a function of chemical composition of the hydrogels. MV have used in sorption studies.  相似文献   

9.
In this study, a novel semi-interpenetrating network (semi-IPN’s) hydrogel, composed of acrylamide (AAm) with N-vinylimidazole (NVI) as comonomer, with poly (ethylene glycol)(PEG) and a multifunctional crosslinker such as trimethylolpropane triacrylate (TMPTA) was prepared. Highly swollen poly (AAm/NVI) hydrogels and semi-IPN’s were synthesized by free radical solution polymerization. Swelling experiments were performed in water at 25°C, gravimetrically. The influence of NVI and PEG content in hydrogels were examined. Poly (AAm/NVI) and poly (AAm/NVI/PEG) hydrogels showed large extents of swelling in aqueous media the swelling being highly dependent on the chemical composition of the hydrogels. Swelling ratio of poly (AAm/NVI) hydrogels and poly (AAm/NVI/PEG) hydrogels was shown 7.16–39.85. Diffusion behavior was investigated. Water diffusion into hydrogels was found to be non-Fickian in character. This study has given the quantitative information on the swelling characteristic of poly (AAm/NVI) hydrogel and semi-IPN’s as water absorbent in many potential applications.  相似文献   

10.
Temperature‐responsive semi‐interpenetrating polymer networks (semi‐IPNs) constructed with chitosan and polyacrylonitrile (PAN) were crosslinked with glutaraldehyde. The semi‐IPN determined the sorption behavior of water at several temperatures and at a relative humidity (RH) of 95% using a dynamic vapor sorption (DVS) system. Water diffusion coefficients of semi‐IPNs were calculated according to the Fickian Law at several temperatures and exhibited a relatively water uptake, 0.1–0.4 at room temperature. The water uptake of hydrogels depended on temperature. The apparent activation energy was dependent of the composition of the semi‐IPN with value of 32.8–34.8 kJmol?1. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 12: 2721–2724, 2003  相似文献   

11.
Polyaniline [p(An)], one of the most known conducting polymers, was prepared within superporus nonionic polyacrylamide [p(AAm)], anionic poly(2‐acrylamido‐2‐methyl‐1‐propane sulfonic acid sodium salt) [p(AMPS)], and cationic poly(3‐acrylamidopropyltrimethyl ammonium chloride) [p(APTMACl)] cryogels. After they were synthesized, washed, and dried, the neutral p(AAm), anionic p(AMPS), and cationic p(APTMACl) cryogels were soaked in an ammonium persulfate/aniline solution (1:1.25 ratio) in 1 M hydrochloric acid for the in situ oxidative polymerization of p(An) with the cryogel matrices as templates or reactors. The prepared p(AAm)/p(An), p(AMPS)/p(An), and p(APTMACl)/p(An) semi‐interpenetrating polymer network (semi‐IPN) conductive cryogel composites were characterized with scanning electron microscopy (SEM), Fourier transform infrared spectroscopy, and conductivity analysis. The SEM images revealed that the superporus cryogel networks were almost completely filled with p(An) conductive polymers (CPs). Among the cryogel–CP semi‐IPNs, we found that p(AAm)/p(An) semi‐IPN conductive cryogel composites provided the highest conductivity values of 1.4 × 10?2 ± 4 × 10?4 S/cm; this was a 6.4 × 106 fold increase in the conductivity from the values of 2.2 × 10?9 ± 1 × 10?10 for p(AAm) cryogels. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 44137.  相似文献   

12.
Acrylamide (AAm)/acrylic acid (AAc) hydrogels in the cylindirical form were prepared by γ‐irradiating binary systems of AAm/AAc with 2.6–20.0 kGy γ‐rays. The effect of the dose and relative amounts of AAc and pH on the swelling properties, diffusion behavior of water, diffusion coefficients, and network properties of hydrogel systems was investigated. The swelling capacities of AAm/AAc hydrogels were in the range of 1000–3000%, while poly(acrylamide) (PAAm) hydrogels swelled in the range of 450–700%. Water diffusion into hydrogels was found to be non‐Fickian‐type diffusion. Diffusion coefficients of AAm/AAc hydrogels were found between 0.79 × 10?5 and 2.78 × 10?5 cm2 min?1. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 3570–3580, 2002  相似文献   

13.
The aim of the work reported here was to investigate temperature‐ and pH‐sensitive hydrogels of N‐isopropylacrylamide (NIPAM) and itaconic acid (IA) and their semi‐interpenetrating polymer networks (semi‐IPNs) with varying contents of poly(ethylene glycol) (PEG). The stimuli responsiveness, swelling behaviour and mechanical properties of the hydrogels and semi‐IPNs were studied in order to investigate the effect of various amounts of PEG. Pulsed‐gradient spin‐echo NMR experiments were carried out to investigate the diffusion process. The pH sensitivity increased with an increasing amount of PEG in the semi‐IPNs, while the overall rate of water uptake was diffusion‐controlled (n < 0.5). For certain PEG contents (5 and 10 wt%), the semi‐IPNs exhibited better mechanical properties than the poly(NIPAM‐co‐IA) copolymer. The calculated values of the self‐diffusion coefficients of water indicated facilitated diffusion of water through the system with increased amounts of PEG, while the self‐diffusion coefficients of a model compound, metoprolol tartrate, showed no significant dependence on the amount of PEG. According to the results obtained and compared to results reported in the literature, the investigated semi‐IPNs may have potential applications in the controlled release of macromolecular active agents such as proteins and peptides. Copyright © 2009 Society of Chemical Industry  相似文献   

14.
A novel semi‐interpenetrating polymer networks (semi‐IPNs) porous salt‐resistant superabsorbent composite was prepared by copolymerization of partially neutralized acrylic acid and acrylamide using polyethylene glycol as semi‐IPNs composite, N,N′‐methylenebisacrylamide, triene propanol phosphate, and trihydroxymethyl propane glycidol ether as crosslinking agents, methanol, propanol, and butanol as foaming agents, and L ‐ascorbic acid and peroxide hydrogen as initiators. To improve the properties of swollen hydrogel, such as strength, resilience, permeabilities, and dispersion, the copolymer was surface‐crosslinked, and then blended with aluminum sulfate, sodium carbonate, and sodium 1‐octadecanol phosphate in the course of post treatment. The influences of reaction conditions on properties of superabsorbent composite were investigated and optimized, and the water absorbency of superabsorbent composite prepared at optimal conditions in 0.9 wt% NaCl aqueous solution under atmospheric pressure and certain load (P ≈ 2 × 103 Pa) were 61 g g?1 and 16.7 g g?1, respectively. Moreover, the swelling rate reached 22.003 × 10?3 g (g s)?1. And the excellent hydrogel properties, such as hydrogel strength, resilience, permeabilities, and dispersion were also obtained. POLYM. ENG. SCI., 2011. © 2011 Society of Plastics Engineers  相似文献   

15.
In this study, a random copolymer of acylamide and acrylic acid [poly(AAm‐co‐AA)] was prepared by a redox copolymerization method of their aqueous solutions. The effects of initial AAm/AA mole ratio, PEG 4000 content, and N,N′‐methylenebisacrylamide concentration on swelling behavior were investigated in water. Average molecular weights between crosslinks, percentage swelling, swelling equilibrium values, and diffusion/swelling characteristics (i.e., the structure of network constant, the type of diffusion, the initial swelling rate, swelling rate constant) were evaluated for every hydrogel systems. The hydrogels showed mass swelling capabilities in the range 789–1040% (for AAm/AA hydrogels), 769–930% (for AAm/AA hydrogels in the presence of PEG 4000), and 716–1040% (for AAm/AA hydrogels containing different concentrations of the crosslinker). The swelling capabilities of the hydrogels decreased with the increasing AA, PEG 4000, and crosslinker concentrations. The diffusion of water into AAm/AA hydrogels was found to be a non‐Fickian type. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 91: 1289–1293, 2004  相似文献   

16.
A ter‐polymeric semi‐IPN has been synthesized by aqueous polymerization of methacrylamide in the presence of polyethylene glycol (PEG) and natural polysaccharides starch, and its enzymatic degradation has been studied in the phosphate buffer medium of pH 6.8 at the physiological temperature 37°C. With the increase in content of enzyme in the external solution and starch in the hydrogel, the degradation is enhanced while the extent of degradation is lowered with the increase in the amount of PEG in the hydrogel. The initial water content also affects the degradability of the polymer matrix. The degradation follows Michaelis–Menten kinetics and KM was found to be 3.92 × 10?5 mol dm?3. The hydrogel exhibits different degradation behavior when studied by “traditional degradation method” (TDM) and “flow through diffusion cell” (FTDC) method. The degradability is suppressed in FTDC method because of the absorption of amylase molecules onto filler particles. Finally the nature and size of the filler particles also affects the degradation behavior of hydrogels. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 2975–2984, 2006  相似文献   

17.
Adsorption properties of copolymers of acrylamide and mesaconic acid (CAME) in aqueous Basic Blue 12 (Nile blue chloride) solution have been investigated. Chemically crosslinked CAME hydrogels with various compositions were prepared from ternary mixtures of acrylamide (A), mesaconic(ME) acid, and water by free radical polymerization in aqueous solution, using a multifunctional crosslinker such as ethylene glycol dimethacrylate (EGDMA). Dynamic swelling tests in water was applied to the hydrogels. Weight swelling ratio (S) values have been calculated. Sorption of Basic Blue 12 (BB 12) onto CAME hydrogels was studied by batch sorption technique at 25°C. In the experiments of the sorption, L type sorption in the Giles classification system was found. Some binding parameters such as initial binding constant (Ki), equilibrium constant (K), monolayer coverage (n), site‐size (u), and maximum fractional occupancy (Ô) for CAME hydrogels‐BB 12 binding system were calculated by using Klotz, Scatchard, and Langmuir linearization methods. Finally, the amount of sorbed BB 12 per gram of dry hydrogel (q) was calculated to be 2.28 × 10?6–7.91× 10?6 mol BB 12 per gram for hydrogels. Sorption % was changed range 16.09–58.86%. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 405–413, 2006  相似文献   

18.
Crosslinked poly(acrylamide) (p(AAm)) as neutral hydrogel is synthesized via photo polymerization technique, and the amide groups within p(AAm) matrices are converted to strongly ionizable carboxylic acids groups via facile modification route by simple treatment of NaOH to obtained NaOH‐p(AAm) hydrogels. Because of the highly ionizable nature of carboxylate groups within mod‐p(AAm), the swelling and metal ion absorbing capacities are increased tremendously, almost 40 and 7.5 folds, respectively. The Co(II) and Ni(II) metal ions are loaded into NaOH‐p(AAm) hydrogels, and are treated with NaBH4 to form corresponding metal nanoparticles in situ within mod‐p(AAm) matrices, and used in H2 generation production from hydrolysis of NaBH4. Various parameters such as functionality of polymeric matrices, the kinds and the amount of metal nanoparticles, and the temperature effecting the H2 generation are investigated. Comparable low Ea with the similar researches in the literature, Ea = 20.07 ± 0.05 kJ mol?1 is obtained in NaBH4 hydrolysis catalyzed by NaOH‐p(AAM)‐Co composite system. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 41106.  相似文献   

19.
A novel semi‐interpenetrating poly(2‐hydroxyethyl methacrylate) (pHEMA) based polyelectrolyte hydrogel [p(HEMA‐co‐METAC)/PEG] was prepared by copolymerizing HEMA with the cationic monomer 2‐methacryloyloxyethyltrimethyl ammonium chloride (METAC) in the presence of polyethylene glycol (PEG) with different content and molecular weight (MW 4000 and 400). The chemical structure of the gels was confirmed by FT‐IR spectroscopy, morphology study was performed by scanning electron microscope (SEM), thermal stability was revealed by thermogravimetric analysis (TGA), and the mechanical properties were determined by electronic universal testing machine. Swelling studies showed introduction of cationic monomer METAC led to high water content, and the obvious salt and pH sensitive properties were observed which proved the smart behavior of the semi‐interpenetrating polymer networks (IPNs) gels. In addition, the effect of temperature and some important biological solution on swelling behavior were reported. Cytotoxicity test demonstrated that synthesized gels owned satisfactory cytocompatibility and were convenient for the application as biomaterials. Finally, the weak bovine serum albumin (BSA) adsorption on semi‐IPNs by introducing METAC and controlling the content of PEG in gels demonstrated that they were of good protein resistance effect in biomedical applications. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41537.  相似文献   

20.
Acrylamide/mesaconic acid (AAm/MA) hydrogels were prepared by free radical solution polymerization in aqueous solution of acrylamide (AAm) with mesaconic acid (MA) as comonomer and two multifunctional crosslinkers such as ethylene glycol dimethacrylate (EGDMA) and 1,4‐butanediol dimethacrylate (BDMA). Swelling experiments were performed in water at 25°C, gravimetrically. The influence of mesaconic acid content in hydrogels was examined. Swelling of AAm/MA hydrogels was increased up to 2301% (for containing 20 mg MA and crosslinked by EGDMA) to 3296% (for containing 80 mg MA and crosslinked by BDMA), while AAm hydrogels swelled up to 1330% (crosslinked by BDMA) to 1400% (crosslinked by EGDMA). The values of equilibrium water content of the hydrogels are 0.9301–0.9706. Diffusion behavior was investigated. Water diffusion into hydrogels was found to be non‐Fickian in character. Diffusion coefficients of AAm/MA hydrogels were calculated by the short time approximation and found to be from 38.01 × 10?6 cm2 s?1 to 182.73 × 10?6 cm2 s?1. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 96: 2253–2259, 2005  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号