首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of poly(N‐isopropylacrylamide) (PNIPA) hydrogels was prepared by free‐radical crosslinking copolymerization of N‐isopropylacrylamide (NIPA) and N,N′‐methylenebisacrylamide (BAAm) in aqueous solutions of poly(ethylene glycol) of molecular weight 300 g/mol (PEG). The amount of PEG in the polymerization solvent, the crosslinker (BAAm) content, and the gel preparation temperature (Tprep) were varied in the gelation experiments. The hydrogels were characterized by the equilibrium swelling and elasticity tests as well as by the measurements of the deswelling–reswelling kinetics of the hydrogels in response to a temperature change between 25 and 48°C. The rate of deswelling of the swollen gel increases while the rate of reswelling of the collapsed gel decreases as the amount of PEG in the polymerization solvent is increased or as the crosslinker content is decreased. The Tprep effect on the swelling kinetics of the hydrogels was only observed if the PEG content of the polymerization solvent is less than 20%, which is explained with the screening of H‐bonding interactions in concentrated PEG solution. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 99: 37–44, 2006  相似文献   

2.
Novel dual temperature‐ and pH‐sensitive poly(acrylic acid‐co‐N‐isopropylacrylamide), AA/NIPAAm, hydrogels were successfully prepared by chemical crosslinking with crosslinkers. Copolymers of AA/NIPAAm were crosslinked in the presence of different mol % of N,N‐methylene bisacrylamide (MBA) and melamine triacrylamide (MAAm) as crosslinkers by bulk radical polymerization. The resultant xerogels were characterized by extracting the soluble fractions and measuring the equilibrium water content. Lower critical solution transition temperatures (LCST) were measured by DSC. The properties of crosslinked AA/NIPAAm series are evaluated in terms of compositional drift of polymerization, heterogeneous crosslinking, and chemical structure of the relevant components. Soluble fractions of the crosslinked networks were reduced by varying the MAAm and MBA concentrations. The influence of environmental conditions such as temperature and pH on the swelling behavior of these polymeric gels was investigated. The swelling behaviors of the resulting gels show pH sensitivity. The prepared MAAm type AA/NIPAAm hydrogels exhibited a more rapid deswelling rate than MBA type AA/NIPAAm hydrogels in ultra pure water in response to abrupt changes from 20°C to 50°C. The results of this study provide valuable information regarding the development of dual stimuli‐sensitive hydrogels with fast responsiveness. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

3.
The purpose of this study was to develop and characterize chemically crosslinked chondroitin sulfate‐co‐poly(methacrylic acid) (CSMA) hydrogels for colon targeting of oxaliplatin (OXP) to treat colorectal cancer. CSMA hydrogels were synthesized by free‐radical polymerization. Chondroitin sulfate was chemically crosslinked with methacrylic acid in an aqueous medium. Ammonium peroxodisulfate and N,N‐methylene bisacrylamide were used as the initiator and crosslinker, respectively. Fourier transform infrared spectroscopy, thermogravimetric analysis, differential scanning calorimetry, X‐ray diffraction, and scanning electron microscopy studies were performed to characterize the fabricated polymeric system. The pH‐sensitive characteristics of the hydrogels were evaluated by swelling dynamics and equilibrium swelling ratio measurements at pH 1.2 and 7.4. A toxicity study of the developed formulations was also conducted on rabbits to determine the toxicity of the drug‐carrier system to the biological system. The characterization studies confirmed the formation of a new polymeric network. A high OXP loading and higher drug release was observed at pH 7.4. The toxicity study confirmed that the developed formulations were nontoxic to the biological system. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45312.  相似文献   

4.
A series of polyacrylamide (PAAm) gels were prepared by free-radical crosslinking copolymerization of acrylamide and N,N′-methylenebis(acrylamide) (BAAm) in water at various crosslinker (BAAm) and chain transfer agent (isopropyl alcohol, IPA) concentrations. It was shown that only 5% of the crosslinker used in the feed forms effective crosslinks in the final hydrogels. At BAAm contents as high as 3 mole%, the equilibrium swelling ratio of the gels in water is independent of the crosslinker content in the feed. This is due to the prevailing multiple crosslinking reactions during the gel formation process. At a fixed crosslinker content, the onset of gelation is shifted towards higher conversions and reaction times as the amount of IPA increases. Addition of IPA in the monomer mixture also increases the equilibrium swelling ratio of PAAm gels. It was shown that the gel crosslinking density increases on rising IPA concentration in the feed due to the increasing rate of intermolecular crosslinking reactions. Received: 30 May 1997/Accepted: 26 June 1997  相似文献   

5.
Semi‐interpenetrating polymer network (semi‐IPN) and fully interpenetrating polymer network (full‐IPN) hydrogels composed of alginate and poly(N‐isopropylacrylamide) were prepared with γ‐ray irradiation. The semi‐IPN hydrogels were prepared through the irradiation of a mixed solution composed of alginate and N‐isopropylacrylamide (NIPAAm) monomer to simultaneously achieve the polymerization and self‐crosslinking of NIPAAm. The full‐IPN hydrogels were formed through the immersion of the semi‐IPN film in a calcium‐ion solution. The results for the swelling and deswelling behaviors showed that the swelling ratio of semi‐IPN hydrogels was higher than that of full‐IPN hydrogels. A semi‐IPN hydrogel containing more alginate exhibited relatively rapid swelling and deswelling rates, whereas a full‐IPN hydrogel showed an adverse tendency. All the hydrogels with NIPAAm exhibited a change in the swelling ratio around 30–40°C, and full‐IPN hydrogels showed more sensitive and reversible behavior than semi‐IPN hydrogels under a stepwise stimulus. In addition, the swelling ratio of the hydrogels continuously increased with the pH values, and the swelling processes were proven to be repeatable with pH changes. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 4439–4446, 2006  相似文献   

6.
Hydrogels were prepared by using egg white albumen (EWA) before and after chemical modification of its lysyl residues with ethylenediamine tetraacetic dianhydride (EDTAD) to incorporate carboxylic groups. This resulted in an increase in swelling ratio of the EWA hydrogels. The swelling ratio increased dramatically in deionized water substantially, more than in pH 7.4 buffer solution. The effects of medium pH, temperature and swelling were investigated, along with crosslinking of the gel network by glutaraldehyde (GLA), as well as acetone treatment. The gels denatured by acetone showed an insignificant increase in swelling ratio for the gels crosslinked with GLA during gel preparation, which is in contrast to the gels crosslinked subsequent to gel formation. The swelling behavior was positively affected by temperature and time. However, an insignificant effect of pH was observed due to electrostatic screening of the carboxylic groups by sodium ions in the buffer solution. Availability of various functional groups on EWA has resulted in adsorption of metals (Cu+2 ions) and non‐metals (PO4?2 anions). Copyright © 2004 Society of Chemical Industry  相似文献   

7.
Stimuli‐responsive hydrogels prepared from poly(N,N‐dimethylaminoethyl methacrylate) (PDMAEMA) and its copolymers have attracted much interest to serve in biomedical and pharmaceutical applications. To investigate pH‐dependent swelling and elasticity, a series of cationic hydrogels based on N,N‐dimethylaminoethyl methacrylate were prepared by free radical crosslinking copolymerization at 60 °C in the presence of tetraethylene glycol dimethacrylate as the crosslinker. The equilibrium swelling and the mechanical properties of the PDMAEMA hydrogels were investigated as a function of the gel preparation concentration. To explain the effect of pH on the equilibrium swelling of the hydrogels, pH‐dependent swelling studies were carried out in solutions of pH ranging from 2.1 to 10.7. It was found that the PDMAEMA hydrogels exhibit a rapid pH‐dependent phase transition in aqueous solutions; that is, the gels first remain in the swollen state at acidic pH then collapse in a very narrow range of pH. The results showed that the volume of PDMAEMA hydrogels in acidic conditions is about 10‐ to 40‐fold larger than that in the basic pH region. By using the Flory–Rehner theory, the characteristic network parameters of the PDMAEMA hydrogels were calculated and good agreement obtained between the swelling equilibria of hydrogels and their mechanical properties over the whole range of gel preparation concentration. © 2012 Society of Chemical Industry  相似文献   

8.
Poly (acrylamide‐co‐methyl methacrylate) hydrogels of different ratios were prepared by using chemical and physical crosslinks to study the effect of nature of crosslinks on swelling behavior of hydrogels. The chemically crosslinked gels were prepared by using NN′‐methylene bis acrylamide, while physically crosslinked hydrogels were prepared by precipitation polymerization method, using dioxane as solvent. Detailed swelling kinetics such as swelling ratio, transport exponent n, diffusion coefficient D and the effect of pH on equilibrium swelling studies. The study revealed that the nature of crosslinks alter the swelling characteristics of the hydrogel. In chemically crosslinked hydrogels the water transport is Fickian in nature, while in the case of the physically crosslinked hydrogels the water transport mechanism is anomalous indicating major change in relaxation mechanism due to nature of crosslinks. The results also indicate that with increasing acrylamide content the swelling ratio of the hydrogels were also increased, but the transport exponent n remains nearly constant. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 779–786, 2003  相似文献   

9.
BACKGROUND: Stimuli‐sensitive or intelligent hydrogels have been investigated for many biomedical and pharmaceutical applications. Those hydrogels with dual sensitivity will have more extensive potential applications. The aim of the work presented was to prepare a series of thermo‐ and pH‐sensitive hydrogels based on poly(vinylmethyl ether) (PVME) and carboxymethylchitosan (CMCS). The hydrogels were crosslinked using electron beam irradiation (EB) or using glutaraldehyde (GA) as a crosslinker at room temperature. RESULTS: The structures of the PVME/CMCS hydrogels obtained using the two crosslinking methods are proposed. The effects of component polymer ratio, GA content, irradiation dose, temperature and pH on the swelling behavior of the PVME/CMCS hydrogels were studied. There is a sharp decrease in the swelling ratios when the temperature increases from 25 to 37 °C. At low pH and also at high pH, the hydrogels have a higher swelling ratio; however, deswelling occurs evidently at a pH of around 3. CONCLUSION: The study shows that both EB and GA crosslinked hydrogels are thermo‐ and pH‐ sensitive, simultaneously. Thus, they may be potential candidates for both thermo‐ and pH‐sensitive applications. Copyright © 2009 Society of Chemical Industry  相似文献   

10.
Genipin‐crosslinked gelatin‐maltodextrin phase‐separated hydrogels consisting of gelatin‐continuous or bicontinuous microstructures were developed to regulate swelling and release behavior of four fluorescent markers of varying molecular weights [(fluorescein (332 Da) and FITC‐dextrans (FD) (4000–250,000 Da)]. Bicontinuous hydrogels showed significantly greater swelling than gelatin‐continuous hydrogels under all conditions (at pH 1.5 and 7.4 and three genipin/gelatin crosslinking ratios) (P < 0.05). With both microstructures, fluorescein showed the largest release rate and total release followed by FD 4000 Da, FD 40,000 Da, and FD 250,000 Da (P < 0.05). Marker molecular weight, pH, and crosslink ratio all affected the rate and amount of release. The mode of transport for the solvent and all markers was Fickian or slightly anomalous, with diffusional exponent (n) values ranging from 0.35 to 0.64. These results demonstrated that with the proper combination of crosslink density, solvent pH, and microstructure, hydrogels with a specified swelling behavior may be developed. This, coupled with a marker of appropriate size, can lead to controllable levels and rates of release. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

11.
A pH‐sensitive hydrogel [P(CE‐co‐DMAEMA‐co‐MEG)] was synthesized by the free‐radical crosslinking polymerization of N,N‐dimethylaminoethyl methacrylate (DMAEMA), poly(ethylene glycol) methyl ether methacrylate(MPEG‐Mac) and methoxyl poly(ethylene glycol)‐poly(caprolactone)‐methacryloyl methchloride (PCE‐Mac). The effects of pH and monomer content on swelling property, swelling and deswelling kinetics of the hydrogels were examined and hydrogel microstructures were investigated by SEM. Sodium salicylate was chosen as a model drug and the controlled‐release properties of hydrogels were pilot studied. The results indicated that the swelling ratios of the gels in stimulated gastric fluids (SGF, pH = 1.4) were higher than those in stimulated intestinal fluids (SIF, pH = 7.4), and followed a non‐Fickian and a Fickian diffusion mechanism, respectively. In vitro release studies showed that its release rate depends on different swelling of the network as a function of the environmental pH and DMAEMA content. SEM micrographs showed homogenous pore structure of the hydrogel with open pores at pH 1.4. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40737.  相似文献   

12.
Temperature‐sensitive poly[(2‐diethylaminoethyl methacrylate)‐co‐(N,N‐dimethylacrylamide)] [P(DEAEMA‐co‐DMAAm)] hydrogels with five different DMAAm contents were synthesized with and without the addition of sodium carbonate as porosity generator. The synthesized hydrogels were characterized with dry gel density measurements, scanning electron microscopy observation and the determination of swelling ratio. The influence of the pore‐forming agent and content of DMAAm on swelling ratio and network parameters such as polymer–solvent interaction parameter (χ), average molecular mass between crosslinks (M?c) and mesh size (ζ) of the cryogels are reported and discussed. The swelling and deswelling rates of the porous hydrogels are much faster than for the same type of hydrogels prepared via conventional methods. At a temperature below the volume phase transition temperature, the macroporous hydrogels also absorbed larger amounts water compared to that of conventional hydrogels and showed obviously higher equilibrated swelling ratios in aqueous medium. In particular, the unique macroporous structure provided numerous water channels for water diffusion in or out of the matrix and, therefore, an improved response rate to the external temperature changes during the deswelling and swelling processes. These properties are attributed to the macroporous and regularly arranged network of the porous hydrogels. Scanning electron micrographs reveal that the macroporous network structure of the hydrogels can be adjusted by applying porosity generation methods during the polymerization reaction. Copyright © 2007 Society of Chemical Industry  相似文献   

13.
Hydrogels consisting of sodium alginate and N‐isopropylacrylamide covalently crosslinked with N,N′‐methylenebisacrylamide were prepared. The mixed‐interpenetrated networks obtained were characterized using elemental analysis, Fourier transform infrared and Raman spectroscopy, swelling measurements and environmental scanning electron microscopy. The thermo‐ and pH‐responsive properties of these hydrogels were evidenced by their swelling behaviour, which depended also on the amount of crosslinking agent and hydrogel composition. Copyright © 2010 Society of Chemical Industry  相似文献   

14.
Cryogenic treatment and UV irradiation were exploited for the preparation of super‐macroporous cryogels from non‐modified high‐molar‐mass dextran. The photo‐crosslinking process was initiated by (4‐benzoylbenzyl)trimethylammonium chloride and N,N′‐methylenebisacrylamide (BAAm) was used as a crosslinking agent. Gel fraction yield and degree of swelling of the dextran cryogels were determined gravimetrically. Cryogel morphology and mechanical properties were studied using environmental scanning electron microscopy and dynamic rheological measurements, respectively. The effects of dextran concentration in the initial polymer solution, polymer molar mass and BAAm content on the crosslinking efficacy, physico‐mechanical properties and morphology of the cryogels were evaluated. The dextran cryogels were assessed as carriers of the model water‐soluble drug metoprolol. © 2017 Society of Chemical Industry  相似文献   

15.
Hydrogels, composed of poly(N‐vinyl‐2‐pyrrolidone) and crosslinked polyacrylamide, were synthesized and the release of vitamin B12 from these hydrogels was studied as a function of the degree of crosslinking and pH of the external swelling media. The three drug‐loaded hydrogel samples synthesized with different crosslinking ratios of 0.3, 0.7, and 1.2 (in mol %) follow different drug‐release mechanisms, that is, chain relaxation with zero‐order, non‐Fickian and Fickian, or diffusion‐controlled mechanisms. To establish a correlation between their swelling behavior and drug‐release mechanism, the former was studied by the weight‐gain method and, at the same time, the concentration of the drug released was studied colorimetrically. Various swelling parameters such as the swelling exponent n, gel‐characteristic constant k, penetration velocity v, and diffusion coefficient D were evaluated to reflect the quantitative aspect of the swelling behavior of these hydrogels. Finally, the drug‐release behavior of the hydrogels was explained by proposing the swelling‐dependent mechanism. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 76: 1706–1714, 2000  相似文献   

16.
In this study, first polyacrylamide hydrogels were synthesized by free‐radical crosslinking polymerization of acrylamide monomer with N,N′‐methylenebis(acrylamide) as a crosslinker in an aqueous solution at 22°C. Then, a series of hydrogels at various charge densities were prepared by partial hydrolysis of polyacrylamide precursors in a 0.1M sodium hydroxide solution at 60°C. The hydrolysis time was varied between 20 and 180 min. The chemical structures and internal morphologies of the hydrogels before and after alkaline hydrolysis were characterized with attenuated total reflectance/Fourier transform infrared and scanning electron microscopy measurements. The swelling ratio of the hydrolyzed hydrogels was measured in buffer solutions at various pHs. From differential curves of dQv/dpH versus pH (where Qv is the equilibrium swelling ratio of the hydrogels), the volume phase transition pH of the hydrogels was found to be 4.33 ± 0.05, regardless of the charge density of the hydrogels. In water at 22°C, the hydrogels with greater charge density showed a more rapid swelling rate because of their higher porosity and hydrophilicity. Moreover, in buffer solutions with the pH changing from 9.0 to 2.0 at 22°C, the hydrogels with greater charge density also exhibited a more rapid deswelling rate than the hydrogels with less charge density. In conclusion, the postmodification method is a good way of preparing pH‐sensitive hydrogels with fast responsiveness. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

17.
A series of nanocomposite hydrogels were prepared from acrylic acid (AA), N‐isopropylacrylamide (NIPAAm), and intercalated hydrotalcite (IHT) by photopolymerization. The influence of the intercalating content of 2‐acrylamido‐2‐methyl propane sulfonic acid (AMPS) in HT on the swelling and mechanical properties for poly(AA‐co‐NIPAAm)/IHT nanocomposite hydrogels was investigated. The results showed that the higher the content of the AMPS‐HT was, the higher the swelling ratio of the gels and the higher the content of the intercalating agent was, the lower swelling ratio. It was also demonstrated that the swelling ratio of the gel was not affected by the counterion in HT. The gel strength and crosslinking density were not enhanced by adding AMPS‐HT into the gel composition, but the maximum effective crosslink density and shear modulus of the nanocomposite hydrogels were increased with an increase of the content of the intercalating agent in HT. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 1572–1580, 2005  相似文献   

18.
Poly(N‐(hydroxymethyl)methacrylamide‐1‐allyl‐2‐thiourea), (poly(NHMMA‐ATU)) hydrogels were synthesized by γ radiation, using 60Co γ source at different radiation doses, to change the porosity and crosslinking density of the hydrogels. The percent of 1‐allyl‐2‐thiourea (ATU) in the monomer mixture before the irradiation was varied between 2.5% and 10.0%, to increase the content of ATU, which was involved in some different applications in the hydrogels. Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), elemental analysis, and the swelling experiments were used to characterize the poly(NHMMA‐ATU) hydrogels synthesized in this study. Characterization results of hydrogels showed that crosslinking density of the hydrogels was increased by the increasing radiation dose and ATU content in the irradiated mixture. Swellability of these hydrogels was found to be high enough to allow the metal ions and biomolecules getting inside the hydrogels to interact with all active groups on/in the hydrogels in the adsorption applications. Equilibrium swelling ratio of the hydrogels at pH 0.5 is at least half of the equilibrium swelling ratio of the hydrogels at pH 7.0. Oscillatory swelling behavior of poly(NHMMA‐ATU) hydrogels between pH 0.5 and pH 7.0 showed that the hydrogels are quite stable at different pH conditions. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 99: 1657–1664, 2006  相似文献   

19.
Polymeric ligand exchangers (PLE) are generally composed of a crosslinked hosting resin that can firmly hold a transition metal ion which can act as terminal functional groups. In this study, poly(N‐vinylimidazole) (PVIm) hydrogels were synthesized by free radical polymerization/crosslinking of N‐vinylimidazole in aqueous solution. Swelling behavior of PVIm hydrogels was investigated and the gel with minimum amount of crosslinking agent, hence showing maximum swelling was selected as the optimum gel system for further studies. To prepare the corresponding PLE for the removal of phosphate, PVIm hydrogels were loaded with Cu(II) ions. Copper loading capacity of PLE was determined to be 5 mmol of Cu(II)/g of dry gel. For removal of phosphate, adsorption experiments were performed in batch mode at different pH (3–9) and phosphate concentrations. It was found that phosphate adsorption capacity did not change significantly within this pH range. The effect of initial concentration of phosphate on the adsorption behavior of PLE was determined for 10 different phosphate concentrations (0.1–1000 mg/L) at pH 7. NaCl solution was used for regeneration of phosphate adsorbed Cu(II) loaded PVIm hydrogels with 100% regeneration efficiency. The new PLE showed high affinity for phosphate; the highest uptake was found to be 218 mg/g dry PLE from 1000 mg/L phosphate solution. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

20.
Organic hybrid gels based on poly(N‐isopropylacrylamide) and a natural polymer, gelatin, were prepared through two‐step crosslinking with genipin or glutaraldehyde. The effects of the gelatin content on the swelling behaviors and physical properties of these hybrid gels were investigated. The results indicated that the swelling ratio decreased with an increase in the content of gelatin in these hybrid gels. The swelling ratio for the gel crosslinked by genipin was significantly smaller than that for the gel crosslinked by glutaraldehyde. The results also showed that the gel crosslinked with genipin had a higher crosslinking density and a higher gel strength. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 1092–1099, 2005  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号