首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper deals with the verification of simulations performed using the finite element method. More specifically, it addresses the calculation of strict bounds on the discretization errors affecting pointwise outputs of interest which may be non‐linear with respect to the displacement field. The method is based on classical tools, such as the constitutive relation error and extraction techniques associated with the solution of an adjoint problem. However, it uses two specific and innovative techniques: the enrichment of the adjoint solution using a partition of unity method, which enables one to consider truly pointwise quantities of interest, and the decomposition of the non‐linear quantities of interest by means of projection properties in order to take into account higher‐order terms in establishing the bounds. Thus, no linearization is performed and the property that the local error bounds are guaranteed is preserved. The effectiveness of the approach and the quality of the bounds are illustrated with two‐dimensional applications in the context of elastic fatigue problems. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

2.
We study practical strategies for estimating numerical errors in scalar outputs calculated from unsteady simulations of convection‐dominated flows, including those governed by the compressible Navier–Stokes equations. The discretization is a discontinuous Galerkin finite element method in space and time on static spatial meshes. Time‐integral quantities are considered for scalar outputs and these are shown to superconverge with temporal refinement. Output error estimates are calculated using the adjoint‐weighted residual method, where the unsteady adjoint solution is obtained using a discrete approach with an iterative solver. We investigate the accuracy versus computational cost trade‐off for various approximations of the fine‐space adjoint and find that exact adjoint solutions are accurate but expensive. To reduce the cost, we propose a local temporal reconstruction that takes advantage of superconvergence properties at Radau points, and a spatial reconstruction based on nearest‐neighbor elements. This inexact adjoint yields output error estimates at a computational cost of less than 2.5 times that of the forward problem for the cases tested. The calculated error estimates account for numerical error arising from both the spatial and temporal discretizations, and we present a method for identifying the percentage contributions of each discretization to the output error. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

3.
4.
A new method is developed to obtain guaranteed error bounds on pointwise quantities of interest for linear transient viscodynamics problems. The calculation of strict error bounds is based on the concept of “constitutive relation error” (CRE) and the solution of an adjoint problem. The central and original point of this work is the treatment of the singularity in space and time introduced by the loading of the adjoint problem. Hence, the adjoint solution is decomposed into two parts: (i) an analytical part determined from Green’s functions; (ii) a residual part approximated with classical numerical tools (finite element method, Newmark integration scheme). The capabilities and the limits of the proposed approach are analyzed on a 2D example.  相似文献   

5.
This work focuses on devising an efficient hierarchy of higher‐order methods for linear transient analysis, equipped with an effective dissipative action on the spurious high modes of the response. The proposed strategy stems from the Nørsett idea and is based on a multi‐stage algorithm, designed to hierarchically improve accuracy while retaining the desired dissipative behaviour. Computational efficiency is pursued by requiring that each stage should involve just one set of implicit equations of the size of the problem to be solved (as standard time integration methods) and, in addition, all the stages should share the same coefficient matrix. This target is achieved by rationally formulating the methods based on the discontinuous collocation approach. The resultant procedure is shown to be well suited for adaptive solution strategies. In particular, it embeds two natural tools to effectively control the error propagation. One estimates the local error through the next‐stage solution, which is one‐order more accurate, the other through the solution discontinuity at the beginning of the current time step, which is permitted by the present formulation. The performance of the procedure and the quality of the two error estimators are experimentally verified on different classes of problems. Some typical numerical tests in transient heat conduction and elasto‐dynamics are presented. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

6.
In goal‐oriented adaptivity, the error in the quantity of interest is represented using the error functions of the direct and adjoint problems. This error representation is subsequently bounded above by element‐wise error indicators that are used to drive optimal refinements. In this work, we propose to replace, in the error representation, the adjoint problem by an alternative operator. The main advantage of the proposed approach is that, when judiciously selecting such alternative operator, the corresponding upper bound of the error representation becomes sharper, leading to a more efficient goal‐oriented adaptivity. While the method can be applied to a variety of problems, we focus here on two‐ and three‐dimensional (2‐D and 3‐D) Helmholtz problems. We show via extensive numerical experimentation that the upper bounds provided by the alternative error representations are sharper than the classical ones and lead to a more robust p‐adaptive process. We also provide guidelines for finding operators delivering sharp error representation upper bounds. We further extend the results to a convection‐dominated diffusion problem as well as to problems with discontinuous material coefficients. Finally, we consider a sonic logging‐while‐drilling problem to illustrate the applicability of the proposed method.  相似文献   

7.
This paper introduces a new goal-oriented adaptive technique based on a simple and effective post-process of the finite element approximations. The goal-oriented character of the estimate is achieved by analyzing both the direct problem and an auxiliary problem, denoted as adjoint or dual problem, which is related to the quantity of interest. Thus, the error estimation technique proposed in this paper would fall into the category of recovery-type explicit residual a posteriori error estimates. The procedure is valid for general linear quantities of interest and it is also extended to non-linear ones. The numerical examples demonstrate the efficiency of the proposed approach and discuss: (1) different error representations, (2) assessment of the dispersion error, and (3) different remeshing criteria.  相似文献   

8.
An error‐reproducing and interpolating kernel method (ERIKM), which is a novel and improved form of the error‐reproducing kernel method (ERKM) with the nodal interpolation property, is proposed. The ERKM is a non‐uniform rational B‐splines (NURBS)‐based mesh‐free approximation scheme recently proposed by Shaw and Roy (Comput. Mech. 2007; 40 (1):127–148). The ERKM is based on an initial approximation of the target function and its derivatives by NURBS basis functions. The errors in the NURBS approximation and its derivatives are then reproduced via a family of non‐NURBS basis functions. The non‐NURBS basis functions are constructed using a polynomial reproduction condition and added to the NURBS approximation obtained in the first step. In the ERKM, the interpolating property at the boundary is achieved by repeating the knot (open knot vector). However, for most problems of practical interest, employing NURBS with open knots is not possible because of the complex geometry of the domain, and consequently ERKM shape functions turn out to be non‐interpolating. In ERIKM, the error functions are obtained through localized Kriging based on a minimization of the squared variance of the estimate with the reproduction property as a constraint. Interpolating error functions so obtained are then added to the NURBS approximant. While enriching the ERKM with the interpolation property, the ERIKM naturally possesses all the desirable features of the ERKM, such as insensitivity to the support size and ability to reproduce sharp layers. The proposed ERIKM is finally applied to obtain strong and weak solutions for a class of linear and non‐linear boundary value problems of engineering interest. These illustrations help to bring out the relative numerical advantages and accuracy of the new method to some extent. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

9.
Hybrid metal halides containing perovskite layers have recently shown great potential for applications in solar cells and light‐emitting diodes. Such compounds exhibit quantum confinement effects leading to tunable optical and electronic properties. Thus, broadband white‐light emission has been observed from diverse metal halides and, owing to high color rendering index, high thermal stability, and low‐temperature solution processability, these materials have attracted interest for application in solid‐state lighting. However, the reported quantum yields for white photoluminescence (PLQY) remain low (i.e., in the range 0.5–9%) and no approach has shown to successfully increase the intensity of this emission. Here, it is demonstrated that the quantum efficiencies of hybrid metal halides can be greatly enhanced if they contain a polymorph of the [PbX4]2? perovskite‐type layers: the [PbX4]2? post‐perovskite‐type chains showing a PLQY of 45%. Different piperazines lead to a hybrid lead halide with either perovskite layers or post‐perovskite chains influencing strongly the presence of self‐trapped states for excitons. It is anticipated that this family of hybrid lead halide materials could enhance all the properties requiring the stabilization of trapped excitons.  相似文献   

10.
A Petrov–Galerkin projection method is proposed for reducing the dimension of a discrete non‐linear static or dynamic computational model in view of enabling its processing in real time. The right reduced‐order basis is chosen to be invariant and is constructed using the Proper Orthogonal Decomposition method. The left reduced‐order basis is selected to minimize the two‐norm of the residual arising at each Newton iteration. Thus, this basis is iteration‐dependent, enables capturing of non‐linearities, and leads to the globally convergent Gauss–Newton method. To avoid the significant computational cost of assembling the reduced‐order operators, the residual and action of the Jacobian on the right reduced‐order basis are each approximated by the product of an invariant, large‐scale matrix, and an iteration‐dependent, smaller one. The invariant matrix is computed using a data compression procedure that meets proposed consistency requirements. The iteration‐dependent matrix is computed to enable the least‐squares reconstruction of some entries of the approximated quantities. The results obtained for the solution of a turbulent flow problem and several non‐linear structural dynamics problems highlight the merit of the proposed consistency requirements. They also demonstrate the potential of this method to significantly reduce the computational cost associated with high‐dimensional non‐linear models while retaining their accuracy. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

11.
In this work, we analyze a method that leads to strict and high‐quality local error bounds in the context of fracture mechanics. We investigate in particular the capability of this method to evaluate the discretization error for quantities of interest computed using the extended finite element method (XFEM). The goal‐oriented error estimation method we are focusing on uses the concept of constitutive relation error along with classical extraction techniques. The main innovation in this paper resides in the methodology employed to construct admissible fields in the XFEM framework, which involves enrichments with singular and level set basis functions. We show that this construction can be performed through a generalization of the classical procedure used for the standard finite element method. Thus, the resulting goal‐oriented error estimation method leads to relevant and very accurate information on quantities of interest that are specific to fracture mechanics, such as mixed‐mode stress intensity factors. The technical aspects and the effectiveness of the method are illustrated through two‐dimensional numerical examples. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

12.
A direct method for soil–structure interaction analysis in two‐dimensional medium is presented in time domain, which is based on the transformation of the analytical frequency‐dependent dynamic stiffness matrix. The present dynamic stiffness matrix for the far‐field region is constructed by assembling stiffness matrices of the analytical frequency‐dependent dynamic infinite elements, so that the equation of motion can be analytically transformed into the time‐domain equation. An efficient procedure is devised to evaluate the dynamic responses in time domain. Verification of the present formulation is carried out by comparing the compliances for a strip foundation on a homogeneous and layered half‐spaces with those obtained by other methods. Numerical analyses are also carried out for the transient responses of an elastic block and tunnel in a homogeneous and a layered half‐space. The comparisons with those by other approaches indicate that the proposed time‐domain method for soil–structure interaction analysis gives good solutions. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

13.
The calibration of constitutive models is based on the solution of an optimization problem, whereby the sought parameter values minimize an objective function that measures the discrepancy between experimental observations and the corresponding simulated response. By the introduction of an appropriate adjoint problem, the resulting formulation becomes well suited for a gradient‐based optimization scheme. A class of viscoelastic models is studied, where a discontinuous Galerkin method is used to integrate the governing evolution equation in time. A practical solution algorithm, which utilizes the time‐flow structure of the underlying evolution equation, is presented. Based on the proposed formulation it is convenient to estimate the sensitivity of the calibrated parameters with respect to measurement noise. The sensitivity is computed using a dual method, which compares favourably with the conventional primal method. The strategy is applied to a viscoelasticity model using experimental data from a uniaxial compression test. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

14.
This paper presents new time‐dependent finite element shape functions suitable for modeling high‐gradient transient conductive heat flow in geothermal systems. The shape functions are made adaptive by enhancing the approximation functions with time‐dependent variables, which may vary according to the transient process without adding extra degrees of freedom or applying mesh adaptation. Two different approaches are presented. First, an iterative method is proposed, in which an exponential approximation function, which is optimized continually during the transient process, is incorporated in the shape function. Second, an analytical method is suggested, in which an analytical solution of a simplified process is incorporated in the shape function, enabling an explicit update of the shape functions in each time step. A methodology for modeling the variation of temperature in one and two dimensions is introduced. The ability of the method to capture high‐gradient temperature profiles using relatively large elements is illustrated with numerical examples of cases in which equally large standard finite elements fail. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

15.
The numerical method of design optimization for structural thermally induced vibration is originally studied in this paper and implemented in the software JIFEX. The direct and adjoint methods of sensitivity analysis for thermal‐induced vibration coupled with both linear and non‐linear transient heat conduction is firstly proposed. Based on the finite element method, the linear structural dynamics is treated simultaneously with linear and non‐linear transient heat conduction. In the heat conduction, the non‐linear factors include the radiation and temperature‐dependent materials. The sensitivity analysis of transient linear and non‐linear heat conduction is performed with the precise time integration method; and then, the sensitivity analysis of structural transient responses is performed by the Newmark method. Both the direct method and the adjoint method are employed to derive the sensitivity equations of thermal vibration. In the adjoint method, two adjoint vectors of structure and of heat conduction are used to derive the adjoint equations. The coupling effect of heat conduction on thermal vibration in the sensitivity analysis is particularly investigated. With the coupling sensitivity analysis, the optimization model is constructed and solved by the sequential linear programming or sequential quadratic programming algorithm. Numerical examples are given to validate the proposed methods and to demonstrate the importance of the coupled design optimization. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

16.
In this paper, a new finite‐element formulation for the solution of electromechanical boundary value problems is presented. As opposed to the standard formulation that uses scalar electric potential as nodal variables, this new formulation implements a vector potential from which components of electric displacement are derived. For linear piezoelectric materials with positive definite material moduli, the resulting finite‐element stiffness matrix from the vector potential formulation is also positive definite. If the material is non‐linear in a fashion characteristic of ferroelectric materials, it is demonstrated that a straightforward iterative solution procedure is unstable for the standard scalar potential formulation, but stable for the new vector potential formulation. Finally, the method is used to compute fields around a crack tip in an idealized non‐linear ferroelectric material, and results are compared to an analytical solution. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

17.
An enriched partition of unity FEM is developed to solve time‐dependent diffusion problems. In the present formulation, multiple exponential functions describing the spatial and temporal diffusion decay are embedded in the finite element approximation space. The resulting enrichment is in the form of a local asymptotic expansion. Unlike previous works in this area where the enrichment must be updated at each time step, here, the temporal decay in the solution is embedded in the asymptotic expansion. Thus, the system matrix that is evaluated at the first time step may be decomposed and retained for every next time step by just updating the right‐hand side of the linear system of equations. The advantage is a significant saving in the computational effort where, previously, the linear system must be reevaluated and resolved at every time step. In comparison with the traditional finite element analysis with p‐version refinements, the present approach is much simpler, more efficient, and yields more accurate solutions for a prescribed number of DoFs. Numerical results are presented for a transient diffusion equation with known analytical solution. The performance of the method is analyzed on two applications: the transient heat equation with a single source and the transient heat equation with multiple sources. The aim of such a method compared with the classical FEM is to solve time‐dependent diffusion applications efficiently and with an appropriate level of accuracy. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

18.
A new methodology for recovering equilibrated stress fields is presented, which is based on traction‐free subdomains' computations. It allows a rather simple implementation in a standard finite element code compared with the standard technique for recovering equilibrated tractions. These equilibrated stresses are used to compute a constitutive relation error estimator for a finite element model in 2D linear elasticity. A lower bound and an upper bound for the discretization error are derived from the error in the constitutive relation. These bounds in the discretization error are used to build lower and upper bounds for local quantities of interest. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

19.
We show that the issue of a posteriori estimate the errors in the numerical simulation of non‐linear parabolic equations can be reduced to a posteriori estimate the errors in the approximation of an elliptic problem with the right‐hand side depending on known data of the problem and the computed numerical solution. A procedure to obtain local error estimates for the p version of the finite element method by solving small discrete elliptic problems with right‐hand side the residual of the p‐FEM solution is introduced. The boundary conditions are inherited by those of the space of hierarchical bases to which the error estimator belongs. We prove that the error in the numerical solution can be reduced by adding the estimators that behave as a locally defined correction to the computed approximation. When the error being estimated is that of a elliptic problem constant free local lower bounds are obtained. The local error estimation procedure is applied to non‐linear parabolic differential equations in several space dimensions. Some numerical experiments for both the elliptic and the non‐linear parabolic cases are provided. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

20.
The paper deals with the issue of accuracy for multiscale methods applied to solve stochastic problems. It more precisely focuses on the control of a coupling, performed using the Arlequin framework, between a deterministic continuum model and a stochastic continuum one. By using residual‐type estimates and adjoint‐based techniques, a strategy for goal‐oriented error estimation is presented for this coupling and contributions of various error sources (modeling, space discretization, and Monte Carlo approximation) are assessed. Furthermore, an adaptive strategy is proposed to enhance the quality of outputs of interest obtained by the coupled stochastic‐deterministic model. Performance of the proposed approach is illustrated on 1D and 2D numerical experiments. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号