首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
    
A novel output‐feedback sliding mode control strategy is proposed for a class of single‐input single‐output (SISO) uncertain time‐varying nonlinear systems for which a norm state estimator can be implemented. Such a class encompasses minimum‐phase systems with nonlinearities affinely norm bounded by unmeasured states with growth rate depending nonlinearly on the measured system output and on the internal states related with the zero‐dynamics. The sliding surface is generated by using the state of a high gain observer (HGO) whereas a peaking free control amplitude is obtained via a norm observer. In contrast to the existing semi‐global sliding mode control solutions available in the literature for the class of plants considered here, the proposed scheme is free of peaking and achieves global tracking with respect to a small residual set. The key idea is to design a time‐varying HGO gain implementable from measurable signals. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

2.
    
An adaptive sliding‐mode unit vector control approach based on monitoring functions to deal with disturbances of unknown bounds is proposed. An uncertain multivariable linear system is considered with a quite general class of nonsmooth disturbances. Global stabilization/tracking is demonstrated using either state or output feedback. The proposed adaptation method makes the control gain less conservative, becoming large enough when the disturbance grows and becoming smaller when it decreases, leading to reduced chattering effects. In contrast to previous methods, the new switching scheme is able to guarantee a prespecified transient time, maximum overshoot, and steady‐state error for multivariable uncertain plants. The proposed technique is applied to the trajectory tracking control of a surface vessel subjected to ocean currents, wind, and waves. Simulations are presented to show the performance of the new adaptation scheme in this adverse scenario of possibly growing, temporarily large, or vanishing exogenous disturbances.  相似文献   

3.
This paper is concerned with the global practical tracking via adaptive output feedback for a class of uncertain nonlinear systems. The system under investigation possesses function control coefficients, the polynomial-of-output growth rate and serious unknowns in the system nonlinearities and the reference signal, and hence is essentially different from those in the closely related literature. To solve the problem, a high-gain observer is introduced to reconstruct the unmeasured system states. The involved high gain is the multiplication of two dynamic gains: one is to compensate the polynomial-of-output in the system growth rate, and the other one is to overcome the serious unknowns in the system and reference signal and the extra system nonlinearities in function control coefficients. Based on the high-gain observer, an adaptive output-feedback controller is successfully designed to guarantee that, for any initial condition of the system, all signals of the closed-loop system are bounded, and the tracking error will be prescribed sufficiently small after a finite time. A numerical example demonstrates the effectiveness of the proposed method.  相似文献   

4.
    
This paper studies the problem of global practical tracking by output feedback for a class of uncertain nonlinear systems with unmeasured state‐dependent growth and unknown time‐varying control coefficients. Compared with the closely related works, the remarkableness of this paper is that the upper and lower bounds of unknown control coefficients are not required to be known a priori. Motivated by our recent works, by combining the methods of universal control and deadzone with the backstepping technique and skillfully constructing a novel Lyapunov function, we propose a new adaptive tracking control scheme with appropriate design parameters. The new scheme guarantees that the state of the resulting closed‐loop system is globally bounded while the tracking error converges to a prescribed arbitrarily small neighborhood of the origin after a finite time. Two examples, including a practical example, are given to illustrate the effectiveness of the theoretical results.  相似文献   

5.
    
This paper considers semi‐global output feedback control for more general nonlinear systems with unknown time‐delay and output function whose derivative is unbounded from above. By introducing a new observer and using the backstepping design method and the Razumikhin stability theorem, an output feedback controller is constructed to achieve a semi‐global stability. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

6.
    
This paper is concerned with the problem of global adaptive stabilization by output feedback for a class of planar nonlinear systems with uncertain control coefficient and unknown growth rate. The control coefficient is not supposed to have known upper bound, and this relaxes the corresponding requirement in the existing literature (see e.g. 1 , 2 . First, by the universal control method, an observer is constructed based on the dynamic high‐gain K‐filters. Then, the control design procedure is developed to obtain the stabilizing controller and dynamic compensator for the uncertainties in the control coefficient. It is shown that the global stability of the closed‐loop system can be guaranteed by the appropriate choice of the design parameters. A simulation example is also provided to illustrate the correctness of the theoretical results. © 2009 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society.  相似文献   

7.
The paper describes a theoretical framework for the design of a robust multivariable output tracking controller using sliding mode concepts. The approach assumes that only measured outputs are available and uses a sliding mode observer to reconstruct estimates of the internal system states for use in a full information sliding mode control law. This scheme is applied to a control problem associated with high temperature furnaces. The paper describes the synthesis of the proposed control scheme from design through to implementation on an industrial test facility. © 1997 by John Wiley & Sons, Ltd.  相似文献   

8.
    
We investigate the problem of global stabilisation by linear output feedback for a class of uncertain nonlinear systems with zero-dynamics. Compared with the previous works, new dilation-based assumptions are introduced that allow the system nonlinearities and its bounding functions to be coupled with all the states. The nonlinear systems of this paper can be considered as an extended form of some low triangular and feedforward systems. Dynamic gain scaling technique is applied to the controller design and stability analysis. It is proved that with a unifying linear controller structure and flexible adaptive laws for the observer gain, global stabilisation of the nonlinear systems can be achieved.  相似文献   

9.
一类非匹配不确定非线性系统的鲁棒跟踪控制制   总被引:3,自引:1,他引:2  
针对一类半严格反馈型不确定非线性系统,提出一种鲁棒反演滑模变结构控制方法.采用反演控制方法设计了使前n-1阶子系统稳定的虚拟控制律,抑制非匹配不确定性的影响;在第n步设计了一种连续可导的滑模变结构控制律,消除控制抖振,实现了对存在未知不确定性及扰动系统的鲁棒输出跟踪.通过Lyapunov定理证明了闭环系统所有信号最终有界.仿真结果验证了该方法的有效性.  相似文献   

10.
    
An output feedback controller is designed for a class of uncertain nonlinear systems with relative degree higher than one. A super‐twisting sliding mode state feedback controller is designed and implemented using a high‐gain observer. It is proved that the controller achieves practical stabilization and the ultimate bound can be reduced by decreasing a design parameter. The performance of the controller is illustrated by simulation.  相似文献   

11.
    
We investigate the problem of robust adaptive tracking by output feedback for a class of uncertain nonlinear systems. Based on the high‐gain scaling technique and a new adaptive law, a linear‐like output feedback controller is constructed. Only one dynamic gain is designed, which makes the controller easier to implement. Furthermore, by modifying the update law, the adaptive controller is robust to bounded external disturbance and is able to guarantee the convergence of the output tracking error to an arbitrarily small residual set. A numerical example is used to illustrate the effectiveness of the proposed method. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

12.
    
This paper investigates the problem of adaptive stabilization by output feedback for a class of uncertain nonlinear systems. The distinguishing feature of such a class of systems is the presence of uncertain control coefficient and unmeasured states dependent growth with growth rate of polynomial‐of‐output multiplying an unknown constant. First, new high‐gain K‐filters with two dynamic gains are introduced, and an appropriate state observer is constructed based on the K‐filters. Then, motivated by the universal control idea, the backstepping scheme is successfully developed for the adaptive output feedback control design. By appropriate choice of the design parameters, the global stability of the closed‐loop system can be guaranteed. Finally, numerical simulations are provided to illustrate the correctness of the theoretical results. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

13.
    
This paper investigates the global practical tracking via adaptive output‐feedback for a class of uncertain nonlinear systems. Essentially different from the closely related literature, the system under investigation possesses unknown time‐varying control coefficients and a polynomial‐of‐output growth rate, and meanwhile, the system nonlinearities and the reference signal allow serious unknowns. For this, an adaptive observer is designed to reconstruct the system unmeasured states, where a new dynamic gain is introduced to compensate the serious unknowns in the system nonlinearities and the reference signal. Based on this and by backstepping technique, an adaptive output‐feedback controller is successfully designed, such that all the states of the closed‐loop system are bounded, and the tracking error will be prescribed sufficiently small after a finite time. A numerical simulation is provided to demonstrate the effectiveness of the proposed method.  相似文献   

14.
    
This paper proposes a robust output feedback controller for a class of nonlinear systems to track a desired trajectory. Our main goal is to ensure the global input-to-state stability (ISS) property of the tracking error nonlinear dynamics with respect to the unknown structural system uncertainties and external disturbances. Our approach consists of constructing a nonlinear observer to reconstruct the unavailable states, and then designing a discontinuous controller using a back-stepping like design procedure to ensure the ISS property. The observer design is realized through state transformation and there is only one parameter to be determined. Through solving a Hamilton–Jacoby inequality, the nonlinear control law for the first subsystem specifies a nonlinear switching surface. By virtue of nonlinear control for the first subsystem, the resulting sliding manifold in the sliding phase possesses the desired ISS property and to certain extent the optimality. Associated with the new switching surface, the sliding mode control is applied to the second subsystem to accomplish the tracking task. As a result, the tracking error is bounded and the ISS property of the whole system can be ensured while the internal stability is also achieved. Finally, an example is presented to show the effectiveness of the proposed scheme. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

15.
研究一类不确定非线性系统的鲁棒输出跟踪控制问题。应用输入/输出反馈线性化法和李亚普诺夫方法,提出一种基于不确定项上界的连续型鲁棒输出跟踪控制器设计方法。该控制器不仅可确保闭环系统的状态一致最终有界,使系统输出按指数规律跟踪期望输出,而且计算简单,更易实现。仿真结果证明了该方法的可行性与有效性。  相似文献   

16.
一种非线性观测器和能量结合的反馈控制系统   总被引:2,自引:0,他引:2       下载免费PDF全文
文中利用高增益观测器和状态反馈控制器设计的分离性原理,提出了一种结合非线性观测器和能量的基于估计状态的反馈控制系统.针对垂直欠驱动具有旋转激励的平移振荡器非线性系统,首先,利用高增益观测器,选取合适的增益,使得观测值迅速收敛到系统的状态,其次,从系统能量的角度出发,选取一个恰当的李雅普诺夫函数,证明了所得到的反馈控制系统的渐进稳定性,系统分析及仿真结果表明该方法在动态性方面优于采用高增益观测器和滑模相结合的控制方法,便于工程实现.  相似文献   

17.
    
In this paper, we propose a unit vector control law by output feedback to solve the problem of global exact output tracking for a class of multivariable uncertain plants with nonlinear disturbances. In order to face the nonuniform arbitrary relative degree obstacle, we extend our earlier estimation scheme based on global finite‐time differentiators using dynamic gains to a multivariable architecture. A diagonally stable condition over the system high‐frequency gain (HFG) matrix has to be assumed. Preserving the simplicity of its mono variable framework, variable gain super‐twisting algorithm (STA) is employed to obtain the robust and exact multivariable differentiator. Moreover, state‐norm observers for the unmeasured state variables are constructed to upper bound the disturbances as well as to update the differentiator gains, being both state dependent. Uniform global exponential stability and ultimate exact tracking are proved. As an alternative to chattering alleviation, we appeal to the Emelyanov's concept of binary control in order to obtain a continuous control signal replacing the unit vector function in the controller by a high‐gain gradient adaptive law with parameter projection. As shown in the existing literature for mono variable systems, the proposed multiparameter binary‐adaptive formulation tends to the unit vector control as the adaptation gain increases to infinity, also smoothing the transition from adaptive to sliding mode control. A numerical example is portrayed to illustrate the potentialities of the developed multivariable techniques.  相似文献   

18.
    
In this article, we consider the event‐triggered cascade high‐gain observer (ETCHGO) for a class of nonlinear systems. By cascading lower dimensional observers, we design a cascade high‐gain observer together with a Zeno‐free event‐triggered mechanism to estimate the state of the plant. We show that the ETCHGO has the same steady‐state performance as the continuous‐time cascade high‐gain observer, that is, there is a finite time after which the estimation error will not exceed the given threshold, and moreover, the finite time and the threshold can be made sufficiently small by adjusting some design parameters. We also investigate an ETCHGO with saturation, which will reduce the peaking value while maintaining the steady‐state estimation performance. Furthermore, we use the ETCHGO with saturation to solve the output feedback stabilization problem for a class of nonlinear systems. An example is given to illustrate our results.  相似文献   

19.
    
In this paper, the problem of global state regulation by output feedback is investigated for a class of uncertain nonlinear systems satisfying some relaxed upper‐triangular‐type condition. Using a linear dynamic gain observer with two dynamic gains and introducing two appropriate change of coordinates, we give a constructive design procedure for the linear‐like output feedback stabilizing controller. It is proved that the proposed controller globally regulates all the states of the uncertain system and maintains global boundedness of the closed‐loop system. An example is provided to demonstrate the effectiveness of the proposed design scheme. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

20.
    
This paper addresses the problem of semi‐global stabilization by output feedback for a class of nonlinear systems whose output gains are unknown. For each subsystem, we first design a state compensator and use the compensator states to construct a control law to stabilize the nominal linear system without the perturbing nonlinearities. Then, combining the output feedback domination approach with block‐backstepping scheme, a series of homogeneous output feedback controllers are constructed recursively for each subsystem and the closed‐loop system is rendered semi‐globally asymptotically stable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号