首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Biosourced poly(lactic acid) (PLA) blends with different content of poly(ethylene oxide‐b‐amide‐12) (PEBA) were prepared by melt compounding. The miscibility, phase structure, crystallization behavior, mechanical properties, and toughening mechanism were investigated. The blend was an immiscible system with the PEBA domains evenly dispersed in the PLA matrix. The PEBA component suppressed the nonisothermal melt crystallization of PLA. With the addition of PEBA, marked improvement in toughness of PLA was achieved. The maximum for elongation at break and impact strength of the blend reached the level of 346% and 60.5 kJ/m2, respectively. The phase morphology evolution in the PLA/PEBA blends after tensile and impact tests was investigated, and the corresponding toughening mechanism was discussed. It was found that the PLA matrix demonstrates obvious shear yielding in the blend during the tensile and impact tests, which induced energy dissipation and therefore lead to improvement in toughness of the PLA/PEBA blends. POLYM. COMPOS., 2013. © 2012 Society of Plastics Engineers  相似文献   

2.
The miscibility, thermal behaviour, morphology and mechanical properties of poly[(R)‐3‐hydroxybutyrate] (PHB) with poly(γ‐benzyl‐L ‐glutamate) (PBLG) are investigated by means of differential scanning calorimetry (DSC), scanning electron microscopy (SEM) and tensile tests. The DSC results show that PHB and PBLG are immiscible in the melt state. Such immiscibility also exists in the amorphous state due to a clear two‐phase separated structure observed by SEM measurements. The blend samples with different thermal history, namely as original and melt samples separately, display differences in thermal behaviour such as the DSC scan profile, the crystallinity and the melting temperature of PHB. The crystallization of PHB both from the molten state and the amorphous state is retarded on addition of the second component. The SEM measurements reveal that a phase inversion occurs between the PHB/PBLG (60/40) and PHB/PBLG (40/60) blends. Except for the PHB/PBLG (40/60) blend, a microphase separated structure is observed for all blend compositions. The mechanical properties vary considerably with blend composition. Compared with pure components, the PHB/PBLG (20/80) blend shows a certain improvement in mechanical properties. © 2001 Society of Chemical Industry  相似文献   

3.
In this work, a poly(?‐caprolactone)/poly(ether‐b‐amide) blend with weight ratio 35/65 was prepared by solution mixing and compression molding. A simple and sensible method to control the phase separation structure was introduced by adjusting the temperature and time for the process of phase separation. Samples with obviously different morphology were obtained and the microstructure was studied by phase contrast optical microscopy, SEM and DSC. The shape memory properties were measured using dynamic mechanical analysis. The results show that the shape memory performance of the blend is closely related to the phase morphology, and the blend with co‐continuous structure has a better shape memory property. A model is put forward to illustrate schematically the microstructural evolution during the shape memory process. © 2018 Society of Chemical Industry  相似文献   

4.
Blend films of poly(L ‐lactide) (PLLA) and poly(vinyl alcohol) (PVA) were obtained by evaporation of hexafluoroisopropanol solutions of both components. The component interaction, crystallization behavior, and miscibility of these blends were studied by solid‐state NMR and other conventional methods, such as Fourier transform infrared (FTIR) spectra, differential scanning calorimetry (DSC), and wide‐angle X‐ray diffraction (WAXD). The existence of two series of isolated and constant glass‐transition temperatures (Tg's) independent of the blend composition indicates that PLLA and PVA are immiscible in the amorphous region. However, the DSC data still demonstrates that some degree of compatibility related to blend composition exists in both PLLA/atactic‐PVA (a‐PVA) and PLLA/syndiotactic‐PVA (s‐PVA) blend systems. Furthermore, the formation of interpolymer hydrogen bonding in the amorphous region, which is regarded as the driving force leading to some degree of component compatibility in these immiscible systems, is confirmed by FTIR and further analyzed by 13C solid‐state NMR analyses, especially for the blends with low PLLA contents. Although the crystallization kinetics of one component (especially PVA) were affected by another component, WAXD measurement shows that these blends still possess two isolated crystalline PLLA and PVA phases other than the so‐called cocrystalline phase. 13C solid‐state NMR analysis excludes the interpolymer hydrogen bonding in the crystalline region. The mechanical properties (tensile strength and elongation at break) of blend films are consistent with the immiscible but somewhat compatible nature of these blends. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 762–772, 2001  相似文献   

5.
The blends of poly(ether sulfone) and poly(aryl ether ketone) containing 1,4‐naphthalene were prepared by melt mixing in a Brabender‐like apparatus. The specimens for measurements were made by compression molding under pressure and then were water‐quenched at room temperature. The tensile strength, tensile modulus, elongation at break, thermal analysis, and scanning electron microscopy were each measured. The dependence of tensile strength, tensile modulus, and elongation at break on blend systems was obtained. The effects of composition and miscibility on the mechanical properties are discussed. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 99: 472–476, 2006  相似文献   

6.
Blending poly(ethylene glycol) (PEG) with poly(lactide) (PLA) decreases the Tg and improves the mechanical properties. The blends have lower modulus and increased fracture strain compared to PLA. However, the blends become increasingly rigid over time at ambient conditions. Previously, it was demonstrated that a PLA of lower stereoregularity was miscible with up to 30 wt% PEG. Aging was due to slow crystallization of PEG from the homogeneous amorphous blend. Crystallization of PEG depleted the amorphous phase of PEG and gradually increased the Tg until aging essentially ceased when Tg of the amorphous phase reached the aging temperature. In the present study, this aging mechanism was tested with a crystallizable PLA of higher stereoregularity. Changes in thermal transitions, solid state structure, and mechanical properties were examined over time. Blends with up to 20 wt% PEG were miscible. Blends with 30 wt% PEG could be quenched from the melt to the homogenous amorphous glass. However, this composition phase separated at ambient temperature with little or no crystallization. Changes in mechanical properties during phase separation reflected increasing rigidity of the continuous PLA-rich phase as it became richer in PLA. Construction of a phase diagram for blends of higher stereoregular PLA with PEG was attempted.  相似文献   

7.
Poly(l ‐lactic acid) (PLLA) was blended with a series of four‐armed poly(? ‐caprolactone)‐block ‐poly(d ‐lactic acid) (4a‐PCL‐b ‐PDLA) copolymers in order to improve its crystallization rate and mechanical properties. It is found that a higher content of 4a‐PCL‐b ‐PDLA copolymer or longer PDLA block in the copolymer lead to faster crystallization of the blend, which is attributed to the formation of stereocomplex crystallites between PLLA matrix and PDLA blocks of the 4a‐PCL‐b ‐PDLA copolymers. Meanwhile, the PDLA block can improve the miscibility between flexible PCL phase and PLLA phase, which is beneficial for improving mechanical properties. The tensile results indicate that the 10% 4a‐PCL5kb ‐PDLA5k/PLLA blend has the largest elongation at break of about 72% because of the synergistic effects of stereocomplexation between enantiomeric PLAs, multi‐arm structure and plasticization of PCL blocks. It is concluded that well‐controlled composition and content of 4a‐PCL‐b ‐PDLA copolymer in PLLA blends can significantly improve the crystallization rate and mechanical properties of the PLLA matrix. © 2017 Society of Chemical Industry  相似文献   

8.
Blended films of poly(L ‐lactide) [ie poly(L ‐lactic acid)] (PLLA) and poly(?‐caprolactone) (PCL) without or mixed with 10 wt% poly(L ‐lactide‐co‐?‐caprolactone) (PLLA‐CL) were prepared by solution‐casting. The effects of PLLA‐CL on the morphology, phase structure, crystallization, and mechanical properties of films have been investigated using polarization optical microscopy, scanning electron microscopy, differential scanning calorimetry and tensile testing. Addition of PLLA‐CL decreased number densities of spherulites in PLLA and PCL films, and improved the observability of spherulites and the smoothness of cross‐section of the PLLA/PCL blend film. The melting temperatures (Tm) of PLLA and PCL in the films remained unchanged upon addition of PLLA‐CL, while the crystallinities of PLLA and PCL increased at PLLA contents [XPLLA = weight of PLLA/(weight of PLLA and PCL)] of 0.4–0.7 and at most of the XPLLA values, respectively. The addition of PLLA‐CL improved the tensile strength and the Young modulus of the films at XPLLA of 0.5–0.8 and of 0–0.1 and 0.5–0.8, respectively, and the elongation at break of the films at all the XPLLA values. These findings strongly suggest that PLLA‐CL was miscible with PLLA and PCL, and that the dissolved PLLA‐CL in PLLA‐rich and PCL‐rich phases increased the compatibility between these two phases. © 2003 Society of Chemical Industry  相似文献   

9.
Blown films from poly(butylene adipate‐co‐terephthalate) and poly(lactide) (PLA) blends were investigated. The blends were prepared in a twin‐screw extruder, in the presence of small amounts of dicumyl peroxide (DCP). The influence of DCP concentration on film blowing, rheological, mechanical, and thermal properties of the blends is reported in this article. Rheological results showed a marked increase in polymer melt strength and elasticity with the addition of DCP. As a consequence, the film homogeneity and the stability of the bubble were improved. The modified blend films, compared with the unmodified blend, showed an improvement in tensile strength and modulus with a slight loss in elongation. Fourier transform infrared and gel results revealed that chain scission and branching were more significant than crosslinking when the DCP loadings in the blends were not higher than 0.7%. A reduction in melt temperatures of PLA was observed due to difficulty in chain crystallization. The concentrations of DCP strongly affected the melting temperatures but had an insignificant effect on the decomposition behavior of the blends. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

10.
In this work, stereocomplex‐poly(l ‐ and d ‐lactide) (sc‐PLA) was incorporated into poly(ε‐caprolactone) (PCL) to fabricate a novel biodegradable polymer composite. PCL/sc‐PLA composites were prepared by solution casting at sc‐PLA loadings of 5–30 wt %. Differential scanning calorimetry (DSC) and wide‐angle X‐ray diffraction (WAXD) demonstrated the formation of the stereocomplex in the blends. DSC and WAXD curves also indicated that the addition of sc‐PLA did not alter the crystal structure of PCL. Rheology and mechanical properties of neat PCL and the PCL/sc‐PLA composites were investigated in detail. Rheological measurements indicated that the composites exhibited evident solid‐like response in the low frequency region as the sc‐PLA loadings reached up to 20 wt %. Moreover, the long‐range motion of PCL chains was highly restrained. Dynamic mechanical analysis showed that the storage modulus (E′) of PCL in the composites was improved and the glass transition temperature values were hardly changed after the addition of sc‐PLA. Tensile tests showed that the Young's modulus, and yield strength of the composites were enhanced by the addition of sc‐PLA while the tensile strength and elongation at break were reduced. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40208.  相似文献   

11.
Differential scanning calorimetry (DSC), wide angle X‐ray diffraction (WAXD) and dynamic mechanical analysis (DMA) properties of poly(lactic acid)/ poly(butylene adipate‐co‐terephthalate) (PLA/PBAT) specimens suggest that only small amounts of poor PLA and/or PBAT crystals are present in their corresponding melt crystallized specimens. In fact, the percentage crystallinity, peak melting temperature and onset re‐crystallization temperature values of PLA/PBAT specimens reduce gradually as their PBAT contents increase. However, the glass transition temperatures of PLA molecules found by DSC and DMA analysis reduce to the minimum value as the PBAT contents of PLAxPBATy specimens reach 2.5 wt %. Further morphological and DMA analysis of PLA/PBAT specimens reveal that PBAT molecules are miscible with PLA molecules at PBAT contents equal to or less than 2.5 wt %, since no distinguished phase‐separated PBAT droplets and tan δ transitions were found on fracture surfaces and tan δ curves of PLA/PBAT specimens, respectively. In contrast to PLA, the PBAT specimen exhibits highly deformable properties. After blending proper amounts of PBAT in PLA, the inherent brittle deformation behavior of PLA was successfully improved. Possible reasons accounting for these interesting crystallization, compatible and tensile properties of PLA/PBAT specimens are proposed. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

12.
Blends of poly(L ‐lactic acid) (PLA) and poly(butylene succinate) (PBS) were prepared with various compositions by a melt‐mixing method and the phase behavior, miscibility, and morphology were investigated using differential scanning calorimetry, wide‐angle X‐ray diffraction, small‐angle X‐ray scattering techniques, and polarized optical microscopy. The blend system exhibited a single glass transition over the entire composition range and its temperature decreased with an increasing weight fraction of the PBS component, but this depression was not significantly large. The DSC thermograms showed two distinct melting peaks over the entire composition range, indicating that these materials was classified as semicrystalline/semicrystalline blends. A depression of the equilibrium melting point of the PLA component was observed and the interaction parameter between PLA and PBS showed a negative value of ?0.15, which was derived using the Flory–Huggins equation. Small‐angle X‐ray scattering revealed that, in the blend system, the PBS component was expelled out of the interlamellar regions of PLA, which led to a significant decrease of a long‐period, amorphous layer thickness of PLA. For more than a 40% PBS content, significant crystallization‐induced phase separation was observed by polarized optical microscopy. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 647–655, 2002  相似文献   

13.
Binary and ternary composites of poly(lactic acid) (PLA), poly(ether‐block‐amide) (PEBAX) and copper nanoparticles were prepared by melt blending in an internal mixer. Compatibility and molecular interactions between the three components of the nanocomposites were evaluated using scanning electron microscopy and Fourier transform infrared spectroscopy. It was found that the carbonyl groups of the PLA and copper nanoparticles interact. Also, PLA and PEBAX are compatible and develop molecular interactions between the C=O of PLA and the C=O and NH of PEBAX, forming dipole–dipole bonds and hydrogen bonds. The compatibility and molecular interaction between PLA and PEBAX are reduced by copper nanoparticles. The reduction of compatibility between PLA and PEBAX produced a lower storage modulus and lower strain at break in the ternary systems than in the blend PLA‐PEBAX. Copper nanoparticles enhanced the crystallinity of PLA. PLA responded more strongly to the nucleating effect of copper when PEBAX was added indicating a synergistic effect. The strain at break of PLA was enhanced by the addition of PEBAX but was severely reduced by the presence of nanoparticles. © 2020 Society of Chemical Industry  相似文献   

14.
Poly(ε‐caprolactone) (PCL)/poly(amino ether) (PAE) blends were obtained by injection molding without any previous extrusion step in an attempt to (i) contribute to the knowledge of the relation between structure and mechanical properties in these type of blends composed of a rubbery and a glassy polymer and (ii) to find out to which extent are the PCL/PAE blends compatible, and therefore whether the biodegradability of PCL can be added as a characteristic of PAE‐based applications. PCL/PAE blends are composed of a crystalline PCL phase, a pure amorphous PCL phase, and a PAE‐rich phase where some PCL is present. The presence of some dissolved and probably unreacted PCL in the PAE‐rich phase led to a low interfacial tension as observed by the small size of the dispersed particles and the large interfacial area. The dependence on composition of both the modulus of elasticity and the yield stress of the blends was parallel to that of the orientation level. The elongation at break showed values similar to those of PAE in PAE‐rich blends, and was slightly synergistic in very rich PCL compositions; this behavior reflects a change in the nature of the matrix, from glassy to rubbery. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

15.
This study examined the miscibility and mechanical properties of melt‐mixed poly(lactic acid) (PLA), poly (trimethylene terephthalate) (PTT), and PLA/PTT blend with 5–10 phr of methyl methacrylate‐butadiene‐styrene copolymer (MBS). The isothermal crystallization kinetics of the PTT blends were analyzed by using the Avrami equation. The Differential Scanning Calorimetry (DSC) and scanning electron microscope results indicated that the miscibility of the PLA/PTT blends was improved by adding 5–10 phr of MBS. Although PLA, with the addition of 10 phr of MBS, had lower tensile strength at yield and higher breaking elongation and impact strength than pure PLA, no improvement in these mechanical properties could be observed in PLA/PTT blends. This result is explained by assuming that the crystallization of PTT at the interface favors the disentanglement of MBS from the PTT domain. J. VINYL ADDIT. TECHNOL., 2011. © 2011 Society of Plastics Engineers  相似文献   

16.
In this study, it will be shown that morphologically tailored tricontinuous ternary blends, comprising polybutylene succinate (PBS), polylactic acid (PLA), and poly (butylene adipate‐co‐terephthalate)(PBAT), can generate new materials with excellent properties. Detailed morphological analysis is used to establish that all three phases in the ternary 33%PBS/33%PLA/33%PBAT blend morphology are highly continuous with a phase structure dominated by complete wetting dynamics. PBS is shown to situate itself between PLA and PBAT. This melt processed, self‐assembled, multiple percolated, blend possesses a high elongation at break (567%), high Young's modulus (1130 MPa), high impact strength (271 J/m), and a storage modulus about 50% higher than pure PBS at room temperature. None of the neat materials demonstrate this combination of high properties and the synergy derives from the tricontinuous structure of the system. The ternary nature of the blend allows for a modulation of the crystallinity behavior as examined by differential scanning calorimeter and X‐ray Diffraction. © 2014 American Institute of Chemical Engineers AIChE J, 60: 3005–3012, 2014  相似文献   

17.
Poly(L ‐lactic acid) (PLLA) was blended with poly(ethylene‐co‐vinyl alcohol) (EVOH) in the presence of an esterification catalyst to induce reaction between the hydroxyl groups of EVOH and the terminal carboxylic group of PLLA. Nascent low‐molecular‐weight PLLA, obtained from a direct condensation polymerization of L ‐lactic acid in bulk state, was used for the blending. Domain size of the PLLA phase in the graft copolymer was much smaller than that corresponding to a PLLA/EVOH simple blend. The mechanical properties of the graft copolymer were far superior to those of the simple blend, and the graft copolymer exhibited excellent mechanical properties even though the biodegradable fraction substantially exceeded the percolation level. The grafted PLLA reduced the crystallization rate of the EVOH moiety. Melting peak temperature (Tm) of the PLLA phase was not observed until the content of PLLA in the graft reaction medium went over 60 wt %. The modified Sturm test results demonstrated that biodegradation of EVOH‐g‐PLLA took place more slowly than that of an EVOH/PLLA simple blend, indicating that the chemically bound PLLA moiety was less susceptible to microbial attack than PLLA in the simple blend. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 886–890, 2005  相似文献   

18.
Poly(butylene succinate) (PBS) and polylactide (PLA) were blended in a co‐rotating twin‐screw extruder with various contents of PBS from 0 to 100 wt%. The effect of PBS content on the thermal and mechanical properties of PBS/PLA blends was investigated by using DSC, softening point measurements, a Charpy impact test and tensile testing. The Fourier transform infrared spectra showed that the polymers are immiscible, but the addition of PBS could modify the PLA structure in PBS/PLA blends by changing the content of amorphous and crystalline phases. In addition, the cold crystallization temperature of PLA in blends decreases in comparison with pure PLA, which shows that PBS could have a plasticizing effect on PLA. This is confirmed by the results of DSC analysis. The mechanical properties of the blends depend on the percentage of PBS addition. Typically, the mechanical properties of PBS/PLA blends are intermediate between the properties of the polyesters from which they are obtained. However, in some cases unexpected changes in mechanical properties of the blends were observed. For example, the elongation at break for a PBS/PLA blend containing 10 wt% PLA is higher than for pure PBS. © 2019 Society of Chemical Industry  相似文献   

19.
王艳宁  金江彬 《中国塑料》2019,33(11):71-77
以扩链剂TMP-6000为增容剂,采用熔融共混制备了聚乳酸(PLA)和聚(3羟基丁酸co3羟基戊酸酯)(PHBV)复合材料,研究了TMP-6000对PLA/PHBV复合材料的结晶行为、微观结构、力学性能的影响。结果表明,无定形PLA的加入抑制了PHBV的结晶,TMP-6000的加入使得PLA/PHBV复合材料的结晶能力变弱,提高了PLA的冷结晶温度,且当TMP-6000含量为0.5 %(质量分数,下同)时,PLA的冷结晶峰开始消失,且适量的TMP-6000使得PHBV的玻璃化转变温度(Tg)升高;TMP-6000的加入使得PHBV均匀分散于PLA基体中,且当TMP-6000含量为0.7 %时,PLA与PHBV的相容性最好;TMP-6000的加入显著提高了PLA/PHBV复合材料的分子量;TMP-6000提高了PLA与PHBV之间的结合力,提高了复合材料的拉伸强度,但断裂伸长率有稍微地降低。  相似文献   

20.
BACKGROUND: Conductive polymer composites (CPCs) can be obtained by filling polymer matrices with electrically conductive particles, and have a wide variety of potential applications. In the work reported, the biodegradable polymer poly(lactic acid) (PLA) as a partially miscible blend with poly(propylene carbonate) (PPC) was used as a polymer matrix. Carbon black (CB) was used as the conducting filler. RESULTS: Fourier transform infrared spectroscopy revealed interactions between matrix and CB filler; this interaction was stronger in PPC‐blend‐CB than in PLA‐blend‐CB composites. A rheology study showed that low‐viscosity PPC could improve the fluidity of the CPCs, but decrease that of CB. With increasing CB content, the enforcement effect, storage modulus and glass transition temperature increased, but the elongation at break decreased. CPCs exhibited the lowest electrical percolation thresholds of 1.39 vol.% CB when the content of PPC in PLA‐blend‐PPC was 40 wt%. The conductivity of CPCs containing 5.33 vol.% CB and 40 wt% PPC reached 1.57 S cm?1. Scanning electron microscopy revealed that CB exhibits a preference for dispersion in the low‐viscosity phase (PPC) of the multiphase matrix. CONCLUSION: In the presence of CB, partially miscible PLA‐blend‐PPC could form multi‐percolation CPCs. Moreover, the combination of PLA and PPC with CB broadens novel application of both renewable polymers and CPCs. Copyright © 2008 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号