首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
王钦清  王潮霞 《应用化工》2010,39(3):337-340
采用细乳液聚合法,以γ-甲基丙烯酰氧基丙基三甲基硅烷改性的TiO2粒子为核,制备了核壳结构的TiO2/聚苯乙烯(PS)复合微球。研究了超声细乳化时间、乳化剂十二烷基硫酸钠(SDS)的浓度、TiO2用量对细乳液粒径及其分布的影响。通过纳米粒度与Zeta电位分析仪、红外光谱、透射电镜等分析手段对产物进行了表征。结果表明,随着超声细乳化时间的增加,初始液滴的粒径变小。聚合后的乳胶粒粒径随着SDS浓度的增大而减小;TiO2用量不足导致乳胶粒粒径分布变宽,且出现双峰;制备所得的TiO2/PS复合微球粒度分布较为均匀,平均直径为176.5 nm,球形规整度较好。  相似文献   

2.
Impurities containing methylene bridges between 2‐((2′‐ethylhexyl)oxy)‐5‐methoxy‐benzene molecules are inevitably formed during the synthesis of 1,4‐bis(chloromethyl)‐2‐((2′‐ethylhexyl)oxy)‐5‐methoxy‐benzene, the monomer used in the preparation of poly[2‐methoxy‐5‐(2′‐ethyl‐hexyloxy)‐1,4‐phenylenevinylene] (MEH‐PPV), but they can be removed by double recrystallization of the monomer prior to polymerization. When impurities containing methylene bridges participate in a Gilch polymerization, the methylene bonds formed in the main chains are prone to break at 200 °C, that is, at least 150 °C below the major degradation temperature of defect‐free MEH‐PPV. Interestingly, the thermal treatment used to break the methylene bonds present reduces the chain aggregation of MEH‐PPV during film formation and induces its blends with poly(2,3‐diphenyl‐5‐octyl‐p‐phenylene‐vinylene) (DPO‐PPV) to form a morphology similar to that of block copolymers. Both significantly enhance the luminescence properties. Copyright © 2006 Society of Chemical Industry  相似文献   

3.
A new soluble fluorescent polymer, poly[2‐decyloxy‐5‐(2′‐(6′‐dodecyl‐oxy)naphthyl)‐1,4‐phenylenevinylene] (DDN‐PPV), with no tolane‐bisbenzyl (TBB) structure defects is prepared by the dehydrohalogenation of 1,4‐bis(bromomethyl)‐2‐decyloxy‐5‐(2′‐(6′‐dodecyloxy)naphthyl)benzene (as monomer) in this study. The aforementioned monomer is synthesized via such chemical reactions as alkylation, bromination, and Suzuki coupling reactions. The structure and properties of the DDN‐PPV are examined by 1H NMR, FTIR, UV/vis, TGA, photoluminescence (PL), and electroluminescence (EL) analyses. The two asymmetric decyloxy and 6′‐dodecyloxynaphthyl substituents on the phenylene ring make the DDN‐PPV soluble in organic solvents and eliminate the TBB structure defects. With the DDN‐PPV acting as a light‐emitting polymer, a device is fabricated with a sequential lamination of ITO/PEDOT/DDN‐PPV/Ca/Ag. The EL spectrum of the device shows a maximum emission at 538 nm. The turn on voltage of the device is about 16.6 V. Its maximum brightness is 14 cd/m2 at a voltage of 18.2 V. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 2734–2741, 2007  相似文献   

4.
Poly[2‐methoxy‐5‐(2′‐ethyl‐hexyloxy)‐para‐phenylene vinylene] (MEH‐PPV)/silica nanoparticle hybrid films were prepared and characterised. Three kinds of materials were compared: parent MEH‐PPV, MEH‐PPV/silica (hybrid A films), and MEH‐PPV/coupling agent MSMA/silica (hybrid B films), in which MSMA is 3‐(trimethoxysilyl) propyl methacrylate. It was found that the hybrid B films could significantly prevent macrophase separation, as evidenced by scanning electron and fluorescence microscopy. Furthermore, the thermal characteristics of the hybrid films were largely improved in comparison with the parent MEH‐PPV. The UV‐visible absorption spectra suggested that the incorporation of MSMA‐modified silica into MEH‐PPV could confine the polymer chain between nanoparticles and thus increase the conjugation length. The photoluminescence (PL) studies also indicated enhancement of the PL intensity and quantum efficiency by incorporating just 2 wt% of MSMA‐modified silica into MEH‐PPV. However, hybrid A films did not show such enhancement of optoelectronic properties as the hybrid B films. The present study suggests the importance of the interface between the luminescent organic polymers and the inorganic silica on morphology and optoelectronic properties. Copyright © 2004 Society of Chemical Industry  相似文献   

5.
Hybrid microspheres with a polystyrene core coated with magnetite nanoparticles were prepared by miniemulsion polymerization. Acrylic acid was used as a comonomer to promote the anchoring of the magnetite nanoparticles onto the polymeric surface. The addition of a hydrophobic agent prevents effectively the monomer from diffusing into the aqueous phase. Magnetite was treated with a silane coupling agent in order to introduce some interactions with the polymers. The morphology and the structure of the hybrid microspheres were characterized using X‐ray diffraction, infrared spectroscopy, transmission electron microscopy and thermogravimetric analysis. The results show that the morphology of the hybrid microspheres was influenced by the concentrations of acrylic acid, hydrophobic agent and surfactant, and that the degree of coating can be tuned by changing these parameters. The miniemulsion polymerization technique is adaptable to the synthesis of magnetite‐coated polymer particles, and the synthesis can be scaled up. Copyright © 2008 Society of Chemical Industry  相似文献   

6.
采用细乳液聚合法制备了纳米乳胶荧光颜料,研究了溶剂黄43用量,乳化剂、助乳化剂种类和用量,引发剂用量和超声波处理时间对纳米乳胶荧光颜料性能的影响。结果表明,纳米乳胶荧光颜料较佳的制备工艺为:溶剂黄43、十六烷(HD)和过硫酸铵(APS)的质量分数分别为1.5%、1.5%和0.8%(以单体质量计),乳化剂1-烯丙氧基-3-(4-壬基苯酚)-2-丙醇聚氧乙烯(10)醚硫酸铵(DNS-86)用量为0.019 11 mol/L,超声波处理时间9 min,在该条件下制备的纳米乳胶荧光颜料的粒径为162.1 nm,具有较高的耐热和离心稳定性,纳米乳胶荧光颜料的最大荧光发射波长517 nm,最大吸收波长425 nm。  相似文献   

7.
A stable aqueous nanocomposite dispersion containing cellulose whiskers and a poly(styrene‐co‐hexylacrylate) matrix was prepared via miniemulsion polymerization. We were able to prepare a stable dispersion with a 20 wt % solid content and a cellulose whiskers content ranging from 1 up to 5 wt % based on polymer content. To avoid particle agglomeration leading to coagulum formation, the addition of a low amount of reactive silane, i.e., methacryloxypropyl triethoxysilane revealed to efficiently stabilize the dispersion. The nanocomposite dispersion was characterized using dynamic light scattering, transmission electron microscopy, and atomic force microscopy. Films obtained by casting followed by water evaporation and particle coalescence were analyzed by differential scanning calorimetry, dynamic mechanical analysis, and tensile testing. At 5 wt % whiskers loading, an enhancement by 500% of the storage modulus above the glass transition was determined. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

8.
A new organosoluble benzotrifluoromethyl group containing poly(p‐phenylenevinylene) (BTFM‐PPV) has been synthesized via Gilch polymerization. The polymer is soluble in common organic solvents such as tetrahydrofuran, chloroform, dichloromethane, toluene, and xylene. BTFM‐PPV exhibited fluorescence emission peak with a very high blue shift at 474 nm with an excitation wavelength at 420 nm compared with many other PPV derivatives reported earlier. Incorporation of fluorated bezotrifluoromethyl pendent group in the PPV backbone lowers the HOMO and LUMO energy levels of BTFM‐PPV (2.48 eV) which retarded the hole injection and increase the electron injection in the device. The current–voltage (I–V) characteristic of the polymer was measured by fabricating the polymer as ITO/BTFM‐PPV/Al diode. The device performance was markedly improved by incorporation of 4‐fluoro‐3trifluoromethylphenyl units into the polymer main chain. The turn on voltage of the device observed from the I–V measurements was 7 V. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

9.
Magnetic polystyrene nanospheres were efficiently prepared by using a new indirect process based on miniemulsion polymerization of styrene. The samples were characterized by X‐ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, transmission electron microscopy (TEM), X‐ray photoelectron spectroscopy (XPS), and vibrating‐sample magnetometry (VSM), respectively. The experimental results clearly show that the 3‐methacryloxypropyltrimethoxy silane was anchored onto the surface of the magnetic particles to form the vinyl end. The size of the magnetic particle is about 6–30 nm. The size of the magnetic particle capped with polystyrene is about 1–2 μm. The magnetic polystyrene spheres exhibit multidomain character, whereas the pure magnetic particles show single domain character. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 3660–3666, 2007  相似文献   

10.
Polystyrene latexes were produced via a newly accessible miniemulsion polymerization where reactive poly(ethylene oxide)–poly(propylene oxide) –poly(ethylene oxide) triblock macrosurfactants were used to impart the interfacial activity during the emulsification and the reactivity in the polymerization. Through atomic force microscopy studies, it was found that the polystyrene latexes produced were extremely small to about 50 nm in a proper experimental condition, and covered richly with poly(ethylene oxide) groups. The polystyrene latexes were expected to have great applicability in the production of structured latex films. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 84: 328–332, 2002  相似文献   

11.
Copolyimide derivatives were prepared from two carboxylic dianhydrides [3,3′,4,4′‐benzophenone tetracarboxylic dianhydride (BTDA) and pyromellitic anhydride (PMDA)] and a single diamine (bis[4‐(3‐aminophenoxy)phenyl]sulfone [BAPS]) following one‐step polymerization. Copolymers could be arranged in sequence through different molar ratios of dianhydride compounds. These polymers were characterized by viscosity, thermal and mechanical properties, solubility, etc. To understand the behavior of the properties, according to the ratio of the dianhydride compound, a copolymer having various properties could be obtained. Further, it was proved that their properties could be determined from the compositions. The solubility of copolyimides with a large molecular weight was moderately improved. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 853–859, 2003  相似文献   

12.
Through one‐step miniemulsion polymerization, hydrophobic polyurethane (PU) dispersions were prepared, with hexadecane (HD) as costabilizer in the oil phase and sodium dodecyl sulfate (SDS) as surfactant in the water phase. The oil phase, including isophorone diisocyanate, poly(oxytetramethylene) glycol, a costabilizer HD, a chain extender 1,4‐butanediol, a crosslinking agent trimethylol propane, and a catalyst dibutyltin dilaurate (SnDBL), was dispersed in the water phase containing SDS. The influences of experimental parameters, such as SnDBL, NCO/OH equivalents, and concentrations of surfactant, were discussed. The particle size and the molecular weight of PU polymer were measured by light scattering and gel permeation chromatography, respectively. With the addition of SnDBL and higher NCO/OH ratio, PU films with higher molecular weights were produced. The chemical structure of the PU polymer was identified by Fourier transform infrared spectrometer, and the adsorption of urethane group was observed. Thermal gravimetric analysis was used to characterize the thermal stability of PU. Furthermore, mechanical property was also investigated and characterized by tensile strength and elongation at break. With a higher NCO/OH ratio and the existence of SnDBL, the tensile strength of PU films was significantly increased. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2008  相似文献   

13.
The synthesis of asymmetric spherical nanoparticles has attracted great interest because their anisotropic structure can be used as unique building blocks for constructing advanced materials. In this article, we report the formation of hemispherical or truncated polystyrene/nanosaponite composite particles via one‐pot miniemulsion polymerization. It was found that the morphology of final composite latex particles strongly depends on the size of the nanoclay and its surface properties. Hemisphere or truncated sphere is the dominant morphology if the size of the nanoclay is larger than 100 nm. With the increase of the nanoclay content (up to 30 wt %), the fraction of hemispherical or truncated polystyrene/nanosaponite composite latex particles increased accordingly. The formation of hemispherical particles is possibly attributed to either the asymmetric growth of polymer chains on one side of the hydrophobically modified clay or the mechanical peeling‐off of large spherical particles between polymer and saponite. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

14.
Well‐defined polystyrene (PS)‐b‐poly(ethylene oxide) (PEO)‐b‐PS triblock copolymers were synthesized by atom‐transfer radical polymerization (ATRP), using C—X‐end‐group PEO as macroinitiators. The triblock copolymers were characterized by infrared spectroscopy, nuclear magnetic resonance spectroscopy, and gel permeation chromatography. The experimental results showed that the polymerization was controlled/living. It was found that when the number‐average molecular weight of the macroinititors increased from 2000 to 10,000, the molecular weight distribution of the triblock copolymers decreased roughly from 1.49 to 1.07 and the rate of polymerization became much slower. The possible polymerization mechanism is discussed. According to the Cu content measured with atomic absorption spectrometry, the removal of catalysts, with CHCl3 as the solvent and kaolin as the in situ absorption agent, was effective. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 77: 2882–2888, 2000  相似文献   

15.
Poly 4‐vinylpyridine (P4VP) microspheres between 170 and 728 nm were synthesized by Emulsifier‐Free Emulsion Polymerization. The monomer concentration, ionic strength, and initiator concentration affected the microsphere size and size distribution. The increasing monomer concentration led to the increase of microsphere size, whereas the size distribution of the resultant P4VP microspheres increased with the increasing ionic strength of the reaction systems. Mo(O2)2O·2DMF was successfully anchored onto the P4VP microspheres by ligand exchange, and the heterogeneous catalyst showed high‐catalytic activity for epoxidation of cis‐cyclooctene with environmentally friendly hydrogen peroxide. The size and morphology of the supported microspheres has important influence on the catalytic activity. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

16.
Poly(styrene‐co‐divinylbenzene) microspheres with size ranging from 1.6 to 1.8 μm were prepared in acetic acid by precipitation polymerization. The particle size and particle size distribution were determined by laser diffraction particle size analyzer, and the morphology of the particles was observed with scanning electron microscope. Besides, effects of various polymerization parameters such as initiator and total monomer concentration, divinylbenzene (DVB) content, polymerization time and polymerization temperature on the morphology and particle size were investigated in this article. In addition, the yield of microspheres increased with the increasing total monomer concentration, initiator loading, DVB concentration and polymerization time. In addition, the optimum polymerization conditions for synthesis of monodisperse crosslinked poly(styrene‐co‐divinylbenzene) microspheres by precipitation polymerization in acetic acid were obtained. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

17.
Stimuli-responsive polymeric nanogels hold great potential in biological applications. In this work, thermoresponsive polymeric nanogels were conveniently prepared through inverse miniemulsion polymerization of two monomers with a good biocompatibility, N-vinylcaprolactam and 2-methoxyethyl acrylate. A macromolecular crosslinker, poly(ethylene glycol) dimethacrylate (PEGDMA), was used to achieve a better thermoresponsiveness, compared with low-molecular-weight crosslinkers. The prepared poly(N-vinylcaprolactam-co-2-methoxyethyl acrylate) (poly(NVCL-co-MEA)) nanogels could be well redispersed in aqueous systems, displaying a reversible thermoresponsive transition behavior. The influences of the synthesis parameters including the emulsifier content, PEGDMA content, and monomer composition on the particle properties of poly(NVCL-co-MEA) nanogels both in inverse emulsions and in aqueous dispersions were systematically investigated. Furthermore, the impacts of the monomer composition and PEGDMA content on the thermoresponsiveness of poly(NVCL-co-MEA) nanogels were also studied. Promisingly, the introduction of MEA monomeric units to the copolymer chains only slightly reduced the thermoresponsiveness of poly(NVCL-co-MEA) nanogels. This feature allows to improve the biocompatibility of polymeric nanogels by using MEA as the comonomer without need to compromise the thermoresponsiveness of nanogels. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 48237.  相似文献   

18.
Atom transfer radical polymerization (ATRP) of (R)‐2‐methacryloyloxy‐2′‐methoxy‐1,1′‐binaphthalene ((R)‐MAMBN) mediated by different amine ligands, copper(I) chloride and ethyl 2‐bromopropionate in different solvents, and reverse ATRP of (R)‐MAMBN were studied. It was shown that optically active polymers were obtained, with poor control of the molecular weights, and low polydispersities. Specific rotation of the polymers increased with increasing molecular weights. By comparison with (R)‐MAMBN, poly((R)‐MAMBN)s exhibits higher specific rotation and a positive Cotton effect. Copyright © 2003 Society of Chemical Industry  相似文献   

19.
Highly crosslinked cauliflower‐like poly(N,N′‐methylenebisacrylamide) particles were prepared by distillation precipitation polymerization in neat acetonitrile with 2,2′‐azobisisobutyronitrile as initiator. Monodisperse hydrophilic polymer microspheres with various functional groups, such as amide, pyrrolidone and carboxylic acid, with a spherical shape and smooth surface in the size range 120–600 nm were prepared by distillation precipitation copolymerizations of functional comonomers including N‐isopropylacrylamide, N‐vinylpyrrolidone, methacrylic acid with N,N′‐methylenebisacrylamide as crosslinker. The polymer particles were formed and precipitated out from the reaction medium during the distillation of the solvent from the reaction system through an entropic precipitation manner. The effects of the solvent and the degree of crosslinking on the morphology and the loading capacity of the functional groups of the resultant polymer particles were investigated. The resulting polymer particles were characterized with scanning electron microscopy, transmission electron microscopy, dynamic light scattering and Fourier transform infrared spectroscopy. Copyright © 2007 Society of Chemical Industry  相似文献   

20.
Isobornyl acrylate (IBOA) and isobornyl methacrylate (IBOMA) were used to replace triethylene glycol dimethacrylate (TEGDMA) as reactive diluents in dental restorative materials. Photopolymerization behaviors of mixtures of IBO(M)A and 2,2‐bis[p‐(2′‐hydroxy‐3′‐methacryloxy propoxy)phenyl]propane (Bis‐GMA) were investigated by Fourier transform infrared spectroscopy. The degree of conversion, volume shrinkage, contact angle, water sorption, water solubility, flexural strength, and modulus values of the Bis‐GMA/IBO(M)A formulations were measured and compared with those of a Bis‐GMA/TEGDMA formulation. The results illustrate that the degree of conversion, volume shrinkage, contact angle, water sorption, flexural strength, and modulus values of the Bis‐GMA/IBO(M)A systems were all lower than those of the Bis‐GMA/TEGDMA system; the water solubility values of the Bis‐GMA/IBO(M)A systems were higher than that of the Bis‐GMA/TEGDMA system. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号