首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 474 毫秒
1.
A new finite element (FE) scheme is proposed for the solution of time‐dependent semi‐infinite wave‐guide problems, in dispersive or non‐dispersive media. The semi‐infinite domain is truncated via an artificial boundary ??, and a high‐order non‐reflecting boundary condition (NRBC), based on the Higdon non‐reflecting operators, is developed and applied on ??. The new NRBC does not involve any high derivatives beyond second order, but its order of accuracy is as high as one desires. It involves some parameters which are chosen automatically as a pre‐process. A C0 semi‐discrete FE formulation incorporating this NRBC is constructed for the problem in the finite domain bounded by ??. Augmented and split versions of this FE formulation are proposed. The semi‐discrete system of equations is solved by the Newmark time‐integration scheme. Numerical examples concerning dispersive waves in a semi‐infinite wave guide are used to demonstrate the performance of the new method. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

2.
Weight‐adjusted inner products are easily invertible approximations to weighted L2 inner products. These approximations can be paired with a discontinuous Galerkin (DG) discretization to produce a time‐domain method for wave propagation which is low storage, energy stable, and high‐order accurate for arbitrary heterogeneous media and curvilinear meshes. In this work, we extend weight‐adjusted DG methods to the case of matrix‐valued weights, with the linear elastic wave equation as an application. We present a DG formulation of the symmetric form of the linear elastic wave equation, with upwind‐like dissipation incorporated through simple penalty fluxes. A semidiscrete convergence analysis is given, and numerical results confirm the stability and high‐order accuracy of weight‐adjusted DG for several problems in elastic wave propagation.  相似文献   

3.
This paper presents an exact non‐reflecting boundary condition for dealing with transient scalar wave propagation problems in a two‐dimensional infinite homogeneous layer. In order to model the complicated geometry and material properties in the near field, two vertical artificial boundaries are considered in the infinite layer so as to truncate the infinite domain into a finite domain. This treatment requires the appropriate boundary conditions, which are often referred to as the artificial boundary conditions, to be applied on the truncated boundaries. Since the infinite extension direction is different for these two truncated vertical boundaries, namely one extends toward x →∞ and another extends toward x→‐ ∞, the non‐reflecting boundary condition needs to be derived on these two boundaries. Applying the variable separation method to the wave equation results in a reduction in spatial variables by one. The reduced wave equation, which is a time‐dependent partial differential equation with only one spatial variable, can be further changed into a linear first‐order ordinary differential equation by using both the operator splitting method and the modal radiation function concept simultaneously. As a result, the non‐reflecting artificial boundary condition can be obtained by solving the ordinary differential equation whose stability is ensured. Some numerical examples have demonstrated that the non‐reflecting boundary condition is of high accuracy in dealing with scalar wave propagation problems in infinite and semi‐infinite media. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

4.
Poro‐elastic materials are commonly used for passive control of noise and vibration and are key to reducing noise emissions in many engineering applications, including the aerospace, automotive and energy industries. More efficient computational models are required to further optimise the use of such materials. In this paper, we present a discontinuous Galerkin method (DGM) with plane waves for poro‐elastic materials using the Biot theory solved in the frequency domain. This approach offers significant gains in computational efficiency and is simple to implement (costly numerical quadratures of highly oscillatory integrals are not needed). It is shown that the Biot equations can be easily cast as a set of conservation equations suitable for the formulation of the wave‐based DGM. A key contribution is a general formulation of boundary conditions as well as coupling conditions between different propagation media. This is particularly important when modelling porous materials as they are generally coupled with other media, such as the surround fluid or an elastic structure. The validation of the method is described first for a simple wave propagating through a porous material, and then for the scattering of an acoustic wave by a porous cylinder. The accuracy, conditioning and computational cost of the method are assessed, and comparison with the standard finite element method is included. It is found that the benefits of the wave‐based DGM are fully realised for the Biot equations and that the numerical model is able to accurately capture both the oscillations and the rapid attenuation of the waves in the porous material. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

5.
The thin‐layer method (TLM) is used to study the propagation of waves in inhomogeneous piezo‐composite layered media caused by mechanical loading and electrical excitation. The element is formulated in the time‐wavenumber domain, which drastically reduces the cost of computation compared to the finite element (FE) method. Fourier series are used for the spatial representation of the unknown variables. The material properties are allowed to vary in the depthwise direction only. Both linear and exponential variations of elastic and electrical properties are considered. Several numerical examples are presented, which bring out the characteristics of wave propagation in anisotropic and inhomogeneous layered media. The element is useful for modelling ultrasonic transducers (UT) and one such example is given to show the effect of electric actuation in a composite material and the difference in the responses elicited for various ply‐angles. Further, an ultrasonic transducer composed of functionally graded piezoelectric materials (FGPM) is modelled and the effect of gradation on mechanical response is demonstrated. The effect of anisotropy and inhomogeneity is shown in the normal modes for both displacement and electric potential. The element is further utilized to estimate the piezoelectric properties from the measured response using non‐linear optimization, a strategy that is referred to as the pulse propagation technique (PPT). Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

6.
Recently developed non‐reflecting boundary conditions are applied for exterior time‐dependent wave problems in unbounded domains. The linear time‐dependent wave equation, with or without a dispersive term, is considered in an infinite domain. The infinite domain is truncated via an artificial boundary ??, and a high‐order non‐reflecting boundary condition (NRBC) is imposed on ??. Then the problem is solved numerically in the finite domain bounded by ??. The new boundary scheme is based on a reformulation of the sequence of NRBCs proposed by Higdon. We consider here two reformulations: one that involves high‐order derivatives with a special discretization scheme, and another that does not involve any high derivatives beyond second order. The latter formulation is made possible by introducing special auxiliary variables on ??. In both formulations the new NRBCs can easily be used up to any desired order. They can be incorporated in a finite element or a finite difference scheme; in the present paper the latter is used. In contrast to previous papers using similar formulations, here the method is applied to a fully exterior two‐dimensional problem, with a rectangular boundary. Numerical examples in infinite domains are used to demonstrate the performance and advantages of the new method. In the auxiliary‐variable formulation long‐time corner instability is observed, that requires special treatment of the corners (not addressed in this paper). No such difficulties arise in the high‐derivative formulation. Published in 2005 by John Wiley & Sons, Ltd.  相似文献   

7.
In this paper a new technique is introduced and applied in solving one‐dimensional linear and non‐linear wave‐type equations on an unbounded spatial domain. This new technique referred to as the non‐reflecting layer method (NRLM) extends the computational domain with an artificial layer on which a one‐way wave equation is solved. The method will be applied to compute stress waves in long rods consisting of NiTi shape memory alloy material subjected to impact loading and undergoing detwinning and pseudo‐elastic material responses. The NRLM has been tested on model problems and it has been found that the computed solutions agree well with the exact solutions, i.e. normalized error levels are in ranges acceptable for engineering computations. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

8.
Non‐local dispersive model for wave propagation in heterogeneous media is derived from the higher‐order mathematical homogenization theory with multiple spatial and temporal scales. In addition to the usual space–time co‐ordinates, a fast spatial scale and a slow temporal scale are introduced to account for rapid spatial fluctuations of material properties as well as to capture the long‐term behaviour of the homogenized solution. By combining various order homogenized equations of motion the slow time dependence is eliminated giving rise to the fourth‐order differential equation, also known as a ‘bad’ Boussinesq problem. Regularization procedures are then introduced to construct the so‐called ‘good’ Boussinesq problem, where the need for C1 continuity is eliminated. Numerical examples are presented to validate the present formulation. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

9.
This paper describes a methodology to build equivalent continuum (ECC) models to represent jointed media for non‐linear wave propagation. In the present work, we study the response of randomly jointed rock media both to quasi‐static and dynamic loadings. We have found that, unlike in the quasi‐static case where no relaxation is observed, during dynamic loading, the deviatoric stress drops in the plastic wave after reaching its peak. Such stress relaxation phenomenon is calculated in jointed media, although the model used for intact rock blocks is rate‐independent. This is a strong indication that EC models for jointed rock should include some rate‐dependence when used in wave propagation simulations. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

10.
This paper discusses the matter of using higher order approximations in three‐dimensional problems through Coons macroelements. Recently, we have proposed a global functional set based on ‘Coons interpolation formula’ for the construction of large two‐dimensional macroelements with degrees of freedom appearing at the boundaries only of the domain. After successive application in many engineering problems, this paper extends the methodology to large three‐dimensional hexahedral macroelements with the degrees of freedom appearing at the 12 edges of the entire domain in case of smooth box‐like structures. Closed‐form expressions of the global shape functions are presented for the first time. It is shown that these global shape functions can be automatically constructed in a systematic way by arbitrarily choosing univariate approximations such as piecewise‐linear, cubic B‐splines, Lagrange polynomials, etc., along the control lines. Moreover, the mechanism of adding facial and internal nodes is presented. Relationships with higher order p‐methods are discussed. Following to excellent results previously derived for the solution of the Laplace equation as well as static and eigenvalue extraction analysis of structures, the paper investigates the performance of Coons macroelements in 3‐D eigenvalue and scalar wave propagation problems by implementing standard time‐integration schemes. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

11.
In this paper, we examine the performance of high‐order finite element methods (FEM) for aeroacoustic propagation, based on the convected Helmholtz equation. A methodology is presented to measure the dispersion and amplitude errors of the p‐FEM, including non‐interpolating shape functions, such as ‘bubble’ shape functions. A series of simple test cases are also presented to support the results of the dispersion analysis. The main conclusion is that the properties of p‐FEM that make its strength for standard acoustics (e.g., exponential p‐convergence, low dispersion error) remain present for flow acoustics as well. However, the flow has a noticeable effect on the accuracy of the numerical solution, even when the change in wavelength due to the mean flow is accounted for, and an approximation of the dispersion error is proposed to describe the influence of the mean flow. Also discussed is the so‐called aliasing effect, which can reduce the accuracy of the solution in the case of downstream propagation. This can be avoided by an appropriate choice of mesh resolution. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

12.
A new finite element scheme is proposed for the numerical solution of time‐harmonic wave scattering problems in unbounded domains. The infinite domain in truncated via an artificial boundary ?? which encloses a finite computational domain Ω. On ?? a local high‐order non‐reflecting boundary condition (NRBC) is applied which is constructed to be optimal in a certain sense. This NRBC is implemented in a special way, by using auxiliary variables along the boundary ??, so that it involves no high‐order derivatives regardless of its order. The order of the scheme is simply an input parameter, and it may be arbitrarily high. This leads to a symmetric finite element formulation where standard C0 finite elements are used in Ω. The performance of the method is demonstrated via numerical examples, and it is compared to other NRBC‐based schemes. The method is shown to be highly accurate and stable, and to lead to a well‐conditioned matrix problem. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

13.
This paper presents a high‐order homogenization model for wave propagation in viscoelastic composite structures. Asymptotic expansions with multiple spatial scales are employed to formulate the homogenization model. The proposed multiscale model operates in the Laplace domain allowing the representation of linear viscoelastic constitutive relationship using a proportionality law. The high‐order terms in the asymptotic expansion of response fields are included to reproduce micro‐heterogeneity‐induced wave dispersion and formation of bandgaps. The first and second‐order influence functions and the macroscopic deformation are evaluated using the finite element method with complex coefficients in the Laplace domain. The performance of the proposed model is assessed by investigating wave propagation characteristics in layered and particulate composites and verified against direct numerical simulations and analytical solutions. The analysis of dissipated energy revealed that material dispersion may contribute significantly to wave attenuation in dissipative composite materials. The wave dispersion characteristics are shown to be sensitive to microstructure morphology. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

14.
Several numerical methods using non‐polynomial interpolation have been proposed for wave propagation problems at high frequencies. The common feature of these methods is that in each element, the solution is approximated by a set of local solutions. They can provide very accurate solutions with a much smaller number of degrees of freedom compared to polynomial interpolation. There are however significant differences in the way the matching conditions enforcing the continuity of the solution between elements can be formulated. The similarities and discrepancies between several non‐polynomial numerical methods are discussed in the context of the Helmholtz equation. The present comparison is concerned with the ultra‐weak variational formulation (UWVF), the least‐squares method (LSM) and the discontinuous Galerkin method with numerical flux (DGM). An analysis in terms of Trefftz methods provides an interesting insight into the properties of these methods. Second, the UWVF and the LSM are reformulated in a similar fashion to that of the DGM. This offers a unified framework to understand the properties of several non‐polynomial methods. Numerical results are also presented to put in perspective the relative accuracy of the methods. The numerical accuracies of the methods are compared with the interpolation errors of the wave bases. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

15.
A time‐discontinuous Galerkin finite element method (DGFEM) for dynamics and wave propagation in non‐linear solids and saturated porous media is presented. The main distinct characteristic of the proposed DGFEM is that the specific P3–P1 interpolation approximation, which uses piecewise cubic (Hermite's polynomial) and linear interpolations for both displacements and velocities, in the time domain is particularly proposed. Consequently, continuity of the displacement vector at each discrete time instant is exactly ensured, whereas discontinuity of the velocity vector at the discrete time levels still remains. The computational cost is then obviously saved, particularly in the materially non‐linear problems, as compared with that required for the existing DGFEM. Both the implicit and explicit algorithms are developed to solve the derived formulations for linear and materially non‐linear problems. Numerical results illustrate good performance of the present method in eliminating spurious numerical oscillations and in providing much more accurate solutions over the traditional Galerkin finite element method using the Newmark algorithm in the time domain. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

16.
Solving fully coupled non‐linear hygro‐thermo‐mechanical problems relative to the behaviour of concrete at high temperatures using monolithic models is nowadays a very interesting and challenging computational problem. These models require an extensive use of computational resources, such as main memory and computational time, due to the great number of variables and the numerical characteristics of the coefficients of the linear systems involved. In this paper, a number of different variants of a frontal solver used within HITECOSP, an application developed within the BRITE Euram III ‘HITECO’ EU project, to solve multiphase porous media problems, are presented and evaluated with respect to their numerical accuracy and performance. When developing the variants, several optimization techniques have been adopted, such as data structure, cache and branches optimizations. Specifically, numerical accuracy has been evaluated using a modified componentwise backward error analysis. The main result of this work is a new solver which is both much faster and more accurate than the original one. Specifically, the code runs over five times faster and numerical errors are reduced by up to three orders of magnitude. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

17.
Several cases of nonlinear wave propagation are studied numerically in two dimensions within the framework of potential flow. The Laplace equation is solved with the harmonic polynomial cell (HPC) method, which is a field method with high‐order accuracy. In the HPC method, the computational domain is divided into overlapping cells. Within each cell, the velocity potential is represented by a sum of harmonic polynomials. Two different methods denoted as immersed boundary (IB) and multigrid (MG) are used to track the free surface. The former treats the free surface as an IB in a fixed Cartesian background grid, while the latter uses a free‐surface fitted grid that overlaps with a Cartesian background grid. The simulated cases include several nonlinear wave mechanisms, such as high steepness and shallow‐water effects. For one of the cases, a numerical scheme to suppress local wave breaking is introduced. Such scheme can serve as a practical mean to ensure numerical stability in simulations where local breaking is not significant for the result. For all the considered cases, both the IB and MG method generally give satisfactory agreement with known reference results. Although the two free‐surface tracking methods mostly have similar performance, some differences between them are pointed out. These include aspects related to modeling of particular physical problems as well as their computational efficiency when combined with the HPC method.  相似文献   

18.
This paper primarily deals with the computational aspects of chemical dissolution‐front instability problems in two‐dimensional fluid‐saturated porous media under non‐isothermal conditions. After the dimensionless governing partial differential equations of the non‐isothermal chemical dissolution‐front instability problem are briefly described, the formulation of a computational procedure, which contains a combination of using the finite difference and finite element method, is derived for simulating the morphological evolution of chemical dissolution fronts in the non‐isothermal chemical dissolution system within two‐dimensional fluid‐saturated porous media. To ensure the correctness and accuracy of the numerical solutions, the proposed computational procedure is verified through comparing the numerical solutions with the analytical solutions for a benchmark problem. As an application example, the verified computational procedure is then used to simulate the morphological evolution of chemical dissolution fronts in the supercritical non‐isothermal chemical dissolution system. The related numerical results have demonstrated the following: (1) the proposed computational procedure can produce accurate numerical solutions for the planar chemical dissolution‐front propagation problem in the non‐isothermal chemical dissolution system consisting of a fluid‐saturated porous medium; (2) the Zhao number has a significant effect not only on the dimensionless propagation speed of the chemical dissolution front but also on the distribution patterns of the dimensionless temperature, dimensionless pore‐fluid pressure, and dimensionless chemical‐species concentration in a non‐isothermal chemical dissolution system; (3) once the finger penetrates the whole computational domain, the dimensionless pore‐fluid pressure decreases drastically in the non‐isothermal chemical dissolution system.  相似文献   

19.
Second‐order, two‐point boundary‐value problems are encountered in many engineering applications including the study of beam deflections, heat flow, and various dynamic systems. Two classical numerical techniques are widely used in the engineering community for the solution of such problems; the shooting method and finite difference method. These methods are suited for linear problems. However, when solving the non‐linear problems, these methods require some major modifications that include the use of some root‐finding technique. Furthermore, they require the use of other basic numerical techniques in order to obtain the solution. In this paper, the author introduces a novel method based on continuous genetic algorithms for numerically approximating a solution to this problem. The new method has the following characteristics; first, it does not require any modification while switching from the linear to the non‐linear case; as a result, it is of versatile nature. Second, this approach does not resort to more advanced mathematical tools and is thus easily accepted in the engineering application field. Third, the proposed methodology has an implicit parallel nature which points to its implementation on parallel machines. However, being a variant of the finite difference scheme with truncation error of the order O(h2), the method provides solutions with moderate accuracy. Numerical examples presented in the paper illustrate the applicability and generality of the proposed method. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

20.
Laser‐acoustics for Testing Coatings and Material Surfaces A laser‐acoustic test method is presented, which can be used for the non‐destructive characterization of coatings and material surfaces. The method measures the dispersion of surface acoustic waves induced by short laser pulses. The technique is based on the fact that the propagation velocity of the wave depends on the frequency in coated and surface modified materials. Measuring the dispersion of the surface acoustic wave enables to determine important properties of the material surface. Three examples demonstrate that the laser‐acoustic method can solve very different problems of surface engineering. The wear resistance of diamond‐like carbon film with a thickness of few nano‐meters was evaluated. The elastic modulus of thermally sprayed coatings which are typically some hundred micro‐meters thick was measured, which allows to conclude on the defect structure of the coatings. The depth of sub‐surface damage layers in semi‐conductor materials was determined, which are created when the wafer is sliced from the ingot.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号