首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The poly(l ‐lactide)‐b‐poly(ethylene glycol)‐b‐poly(l ‐lactide) block copolymers (PLLA‐b‐PEG‐b‐PLLA) were synthesized in a toluene solution by the ring‐opening polymerization of 3,6‐dimethyl‐1,4‐dioxan‐2,5‐dione (LLA) with PEG as a macroinitiator or by transterification from the homopolymers [polylactide and PEG]. Two polymerization conditions were adopted: method A, which used an equimolar catalyst/initiator molar ratio (1–5 wt %), and method B, which used a catalyst content commonly reported in the literature (<0.05 wt %). Method A was more efficient in producing copolymers with a higher yield and monomer conversion, whereas method B resulted in a mixture of the copolymer and homopolymers. The copolymers achieved high molar masses and even presenting similar global compositions, the molar mass distribution and thermal properties depends on the polymerization method. For instance, the suppression of the PEG block crystallization was more noticeable for copolymer A. An experimental design was used to qualify the influence of the catalyst and homopolymer amounts on the transreactions. The catalyst concentration was shown to be the most important factor. Therefore, the effectiveness of method A to produce copolymers was partly due to the transreactions. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40419.  相似文献   

2.
The fluorescent amphiphilic block copolymer methoxy poly(ethylene glycol) (mPEG)‐b‐poly(ethyl cyanoacrylate) (PECA)–2‐(N‐carbazolyl) ethyl methacrylate (CzEMA) was synthesized via living oxyanion‐initiated polymerization. mPEG‐b‐PECA–CzEMA was characterized by gel permeation chromatography, 1H‐NMR, and Fourier transform infrared spectroscopy. The results indicate that the polymerization was well controlled with a narrow molecular weight distribution. The mPEG‐b‐PECA–CzEMA nanoparticles prepared by nanoprecipitation techniques showed a narrow size distribution with an average diameter of less than 100 nm. The mPEG‐b‐PECA–CzEMA exhibited a strong carbazole fluorescence. Furthermore, it was found that the fluorescence intensity of mPEG‐b‐PECA–CzEMA was sensitive to a change in solvent. The results indicate that a subtle change in the state of the polymer micellar association may have altered the state of carbazole groups, which was responsible for the fluorescence emission. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

3.
A series of poly(?‐caprolactone)–poly(ethylene glycol) (PCL‐PEG) and poly(?‐caprolactone/glycolide)–poly(ethylene glycol) [P(CL/GA)‐PEG] diblock copolymers were prepared by ring‐opening polymerization of ?‐caprolactone or a mixture of ?‐caprolactone and glycolide using monomethoxy PEG (mPEG) as macroinitiator and Sn(Oct)2 as catalyst. The resulting copolymers were characterized using 1H‐NMR, gel permeation chromatography, differential scanning calorimetry, and wide‐angle X‐ray diffraction. Copolymer micelles were prepared using the nanoprecipitation method. The morphology of the micelles was spherical or worm‐like as revealed by transmission electron microscopy, depending on the copolymer composition and the length of the hydrophobic block. Introduction of the glycolide component, even in small amounts (CL/GA = 10), disrupted the chain structure and led to the formation of spherical micelles. Interestingly, the micelle size decreased with the encapsulation of paclitaxel. Micelles prepared from mPEG5000‐derived copolymers exhibited better drug loading properties and slower drug release than those from mPEG2000‐derived copolymers. Drug release was faster for copolymers with shorter PCL blocks than for those with longer PCL chains. The introduction of glycolide moieties enhanced drug release, but the overall release rate did not exceed 10% in 30 days. In contrast, drug release was enhanced in acidic media. Therefore, these bioresorbable micelles and especially P(CL/GA)‐PEG micelles with excellent stability, high drug loading content, and prolonged drug release could be promising for applications as drug carriers. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45732.  相似文献   

4.
A series of biodegradable thermo‐sensitive hydrogels were synthesized by ring‐opening polymerization of methoxy‐poly(ethylene glycol) (mPEG) and various ester monomers, i.e. D ,L ‐lactide, glycolide, β‐propiolactone, δ‐valerolactone and ε‐caprolactone. The copolymers were characterized using 1H NMR spectroscopy and gel permeation chromatography. The micelle properties were also measured. The results indicated that the diblock copolymers formed nano‐micelles at low concentrations in aqueous phase. The lower critical solution temperatures of the diblock copolymers were above 35 °C at 1 wt%. As the temperature increased above room temperature, the diblock copolymer solutions underwent a sol‐to‐gel phase transition, which was manifested in viscosity increases, indicative of the formation of a gel. The mPEG–polyester diblock copolymer solutions exhibited sol‐gel transition behavior as a function of temperature and polymer concentration. Copyright © 2010 Society of Chemical Industry  相似文献   

5.
Amphiphilic polycarbonate copolymers including methoxy‐terminated poly(ethylene glycol)‐co‐poly (5,5‐dimethyl trimethylene carbonate) [Poly(PEG‐b‐TMC)] and poly(ethylene glycol)‐co‐poly(trimethylene carbonate) [Poly(PEG‐b‐DTC)] were synthesized. The water‐in‐oil‐in‐water (W/O/W) solvent evaporation technique was adopted to produce anticancer magnetic Poly(PEG‐b‐DTC) microspheres containing tumor necrosis factor‐α (TNF‐α) genes and Fe3O4 magnetic ultrafine powder. Drug release studies showed that the microspheres can sustain a steady release rate of TNF‐α genes in 0.1M phosphate buffer saline solution in vitro for up to 60 h. In vitro cytotoxicity assays demonstrated that the microspheres have high inhibition and antitumor action to human hepatocellular carcinoma (Bel‐7204) cells in vitro. In vivo inhibition on the growth of hepatic carcinomas and histopathologic observation indicated that the microspheres possess a markedly high antitumor activity to human hepatocellular carcinoma (Bel‐7204). © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

6.
Two series of poly(ε‐caprolactone)‐b‐poly(ethylene glycol)‐b‐poly(ε‐caprolactone) triblock copolymers were prepared by the ring opening polymerization of ε‐caprolactone in the presence of poly(ethylene glycol) and dibutylmagnesium in 1,4‐dioxane solution at 70°C. The triblock structure and molecular weight of the copolymers were analyzed and confirmed by 1H NMR, 13C NMR, FTIR, and gel permeation chromatography. The crystallization and thermal properties of the copolymers were investigated by wide‐angle X‐ray diffraction (WAXD) and differential scanning calorimetry (DSC). The results illustrated that the crystallization and melting behaviors of the copolymers were depended on the copolymer composition and the relative length of each block in copolymers. Crystallization exothermal peaks (Tc) and melting endothermic peaks (Tm) of PEG block were significantly influenced by the relative length of PCL blocks, due to the hindrance of the lateral PCL blocks. With increasing of the length of PCL blocks, the diffraction and the melting peak of PEG block disappeared gradually in the WAXD patterns and DSC curves, respectively. In contrast, the crystallization of PCL blocks was not suppressed by the middle PEG block. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

7.
Novel amphiphilic ABA‐type poly(D ‐gluconamidoethyl methacrylate)‐b‐polyurethane‐b‐poly(D ‐gluconamidoethyl methacrylate) (PGAMA‐b‐PU‐b‐PGAMA) tri‐block copolymers were successfully synthesized via the combination of the step‐growth and copper‐catalyzed atom transfer radical polymerization (ATRP). Dihydroxy polyurethane (HO‐PU‐OH) was synthesized by the step‐growth polymerization of hexamethylene diisocyanate with poly(tetramethylene glycol). PGAMA‐b‐PU‐b‐PGAMA block copolymers were synthesized via copper‐catalyzed ATRP of GAMA in N, N‐dimethyl formamide at 20°C in the presence of 2, 2′‐bipyridyl using Br‐PU‐Br as macroinitiator and characterized by 1H‐NMR spectroscopy and GPC. The resulting block copolymer forms spherical micelles in water as observed in TEM study, and also supported by 1H NMR spectroscopy and light scattering. Miceller size increases with increase in hydrophilic PGAMA chain length as revealed by DLS study. The critical micellar concentration values of the resulting block copolymers increased with the increase of the chain length of the PGAMA block. Thermal properties of these block copolymers were studied by thermo‐gravimetric analysis, and differential scanning calorimetric study. Spherical Ag‐nanoparticles were successfully synthesized using these block copolymers as stabilizer. The dimension of Ag nanoparticle was tailored by altering the chain length of the hydrophilic block of the copolymer. A mechanism has been proposed for the formation of stable and regulated Ag nanoparticle using various chain length of hydrophilic PGAMA block of the tri‐block copolymer. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

8.
Atactic poly(3‐hydroxybutyrate) (a‐PHB) and block copolymers of poly(ethylene glycol) (PEG) with poly(ε‐caprolactone) (PCL‐b‐PEG) were synthesized through anionic polymerization and coordination polymerization, respectively. As demonstrated by differential scanning calorimetry (DSC) and dynamic mechanical thermal analysis (DMTA) measurements, both chemosynthesized a‐PHB and biosynthesized isotactic PHB (i‐PHB) are miscible with the PEG segment phase of PCL‐b‐PEGs. However, there is no evidence showing miscibility between both PHBs and the PCL segment phase of the copolymer even though PCL has been block‐copolymerized with PEG. Based on these results, PCL‐b‐PEG was added, as a compatibilizer, to both the PCL/a‐PHB blends and the PCL i‐PHB blends. The blend films were obtained through the evaporation of chloroform solutions of mixed components. Excitingly, the improvement in mechanical properties of PCL/PHB blends was achieved as anticipated initially upon the addition of PCL‐b‐PEG. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 80: 2600–2608, 2001  相似文献   

9.
Poly{[α‐maleic anhydride‐ω‐methoxy‐poly(ethylene glycol)]‐co‐(ethyl cyanoacrylate)} (PEGECA) copolymers were prepared by radical polymerization of macromolecular poly(ethylene glycol) monomers (PEGylated) and ethyl 2‐cyanoacrylate in solvent. The structures of the copolymer were characterized by Fourier‐transform infrared (FTIR) and proton nuclear magnetic resonance (1H‐NMR). The morphology and size of the PEGECA nanoparticles prepared by nanoprecipitation techniques were investigated by transmission electron microscopy (TEM) and photon correlation spectroscopy (PCS) methods. The results show that the PEGECA can self‐assemble into highly stable nanoparticles in aqueous media, and inner core and outer shell morphology. The size of the nanoparticles was strongly influenced by the solvent character and the copolymer concentration in the organic solvents. A hydrophobic drug, ibuprofen, was effectively incorporated into the nanoparticles, which provides a delivery system for ibuprofen and other hydrophobic compounds. Copyright © 2005 Society of Chemical Industry  相似文献   

10.
Excellent biocompatible polymeric membranes were prepared by combining the antifouling property of poly(ethylene glycol) methyl ether (mPEG) and the anticoagulant property of poly(sodium p‐styrene sulfonate) (PSS). Block copolymers of poly(ethylene glycol) methyl ether‐b‐poly(sodium p‐styrene sulfonate) (mPEG‐b‐PSS) with different chain lengths were synthesized by ATRP using mPEG macroinitiator. The copolymers were then used to modify polyethersulfone (PES) membrane via layer‐by‐layer (LBL) self‐assembly technology. The chemical compositions, surface morphologies and hydrophilicity of the modified membranes were characterized, indicating that the mPEG‐b‐PSS copolymers were successfully deposited on the membranes surfaces. Then, the blood compatibility and cytocompatibility of the modified membranes were systematically investigated. The results indicated that the mPEG‐b‐PSS copolymers could improve the hydrophilicity and the resistance to protein adsorption, and had great effect on suppressing platelet adhesion, prolonging clotting times, and improving cytocompatibility. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41245.  相似文献   

11.
A series of polycarbonate copolymers were synthesized by the ring‐opening bulk polymerization of 2‐phenyl‐5,5‐bis(hydroxymethyl) trimethylene carbonate (PTC) and 5,5‐dimethyl trimethylene carbonate (DTC) with tin(II) 2‐ethylhexanoate and aluminum isopropoxide as initiators. The copolymers obtained were characterized by 1H‐NMR, Fourier transform infrared, and ultraviolet. The influence of the molar ratio of the monomers, the initiators, and their concentrations, the reaction time, and the reaction temperature on the copolymerization was also studied. The copolymerization of monomers DTC and PTC was a nonideal copolymerization, and the copolymerization reactivity ratio of the monomer DTC was higher than that of PTC in the copolymerization process. In vitro release profiles of fluorouracil from the copolymers showed that the copolymer had a steady drug‐release rate and good controlled‐release property. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2008  相似文献   

12.
The aim of the work reported was to synthesize a series of double‐hydrophilic poly(methacrylic acid)‐block‐poly(ethylene glycol)‐block‐poly(methacrylic acid) (PMAA‐b‐PEG‐b‐PMAA) triblock copolymers and to study their self‐assembly behavior. These copolymeric self‐assembly systems are expected to be potential candidates for applications as carriers of hydrophilic drugs. Bromo‐terminated difunctional PEG macroinitiators were used to synthesize well‐defined triblock copolymers of poly(tert‐butyl methacrylate)‐block‐poly(ethylene glycol)‐block‐poly(tert‐butyl methacrylate) via reversible‐deactivation radical polymerization. After the removal of the tert‐butyl group by hydrolysis, double‐hydrophilic PMAA‐b‐PEG‐b‐PMAA triblock copolymers were obtained. pH‐sensitive spherical micelles with a core–corona structure were fabricated by self‐assembly of the double‐hydrophilic PMAA‐b‐PEG‐b‐PMAA triblock copolymers at lower solution pH. Transmission electron microscopy and laser light scattering studies showed the micelles were of nanometric scale with narrow size distribution. Solution pH and micelle concentration strongly influenced the hydrodynamic radius of the spherical micelles (48–310 nm). A possible reason for the formation of the micelles is proposed. Copyright © 2010 Society of Chemical Industry  相似文献   

13.
Poly(p‐dioxanone)–poly(ethylene glycol)–poly(p‐dioxanone) ABA triblock copolymers (PEDO) were synthesized by ring‐opening polymerization from p‐dioxanone using poly(ethylene glycol) (PEG) with different molecular weights as macroinitiators in N2 atmosphere. The copolymer was characterized by 1H NMR spectroscope. The thermal behavior, crystallization, and thermal stability of these copolymers were investigated by differential scanning calorimetry and thermogravimetric measurements. The water absorption of these copolymers was also measured. The results indicated that the content and length of PEG chain have a greater effect on the properties of copolymers. This kind of biodegradable copolymer will find a potential application in biomedical materials. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102:1092–1097, 2006  相似文献   

14.
Diblock copolymers with different poly(ε‐caprolactone) (PCL) block lengths were synthesized by ring‐opening polymerization of ε‐caprolactone in the presence of monomethoxy poly(ethylene glycol) (mPEG‐OH, MW 2000) as initiator. The self‐aggregation behaviors and microscopic characteristics of the diblock copolymer self‐aggregates, prepared by the diafiltration method, were investigated by using 1H NMR, dynamic light scattering (DLS), and fluorescence spectroscopy. The PEG–PCL block copolymers formed the self‐aggregate in an aqueous environment by intra‐ and/or intermolecular association between hydrophobic PCL chains. The critical aggregation concentrations of the block copolymer self‐aggregate became lower with increasing hydrophobic PCL block length. On the other hand, reverse trends of mean hydrodynamic diameters were measured by DLS owing to the increasing bulkiness of the hydrophobic chains and hydrophobic interaction between the PCL microdomains. The partition equilibrium constants (Kv) of pyrene, measured by fluorescence spectroscopy, revealed that the inner core hydrophobicity of the nanoparticles increased with increasing PCL chain length. The aggregation number of PCL chain per one hydrophobic microdomain, investigated by the fluorescence quenching method using cetylpyridinium chloride as a quencher, revealed that 4–20 block copolymer chains were needed to form a hydrophobic microdomain, depending on PCL block length. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 99: 3520–3527, 2006  相似文献   

15.
The synthesis of polyacrylonitrile‐block‐poly(ethylene oxide) (PAN‐b‐PEO) diblock copolymers is conducted by sequential initiation and Ce(IV) redox polymerization using amino‐alcohol as the parent compound. In the first step, amino‐alcohol potassium with a protected amine group initiates the polymerization of ethylene oxide (EO) to yield poly(ethylene oxide) (PEO) with an amine end group (PEO‐NH2), which is used to synthesize a PAN‐b‐PEO diblock copolymer with Ce(IV) that takes place in the redox initiation system. A PAN‐poly(ethylene glycol)‐PAN (PAN‐PEG‐PAN) triblock copolymer is prepared by the same redox system consisting of ceric ions and PEG in an aqueous medium. The structure of the copolymer is characterized in detail by GPC, IR, 1H‐NMR, DSC, and X‐ray diffraction. The propagation of the PAN chain is dependent on the molecular weight and concentration of the PEO prepolymer. The crystallization of the PAN and PEO block is discussed. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 1753–1759, 2003  相似文献   

16.
The interactions between nanoparticles and cells or tissues are frequently mediated by different biomolecules adsorbed onto the surface of nanoparticles. In this study, several methoxy poly(ethylene glycol)‐poly(ε‐caprolactone) (mPEG‐PCL) copolymers with various mPEG/PCL ratios were synthesized and used to produce three types of mPEG‐PCL nanoparticles. The protein‐adsorption behavior of nanoparticles was assessed using fetal‐bovine‐serum (FBS) as a model protein. The cell uptake of nanoparticles at different nanoparticle doses as well as various culture periods was examined by measuring their endocytosis rate related to Hela cells cultured in FBS‐free and FBS‐contained media. The blood clearance of nanoparticles was evaluated using Kunming mice to see the differences in circulation durations of nanoparticles. Results suggest that that FBS is able to significantly regulate the cell uptake of nanoparticles in vitro, and on the other hand, the size and mPEG/PCL molar ratio of mPEG/PCL nanoparticles are closely correlated to their blood clearance. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 42884.  相似文献   

17.
Suitable carrier systems for sustained release of curcumin were studied by using the self‐assembled polymeric micelles. Poly(ethylene glycol) methyl ether and poly(aromatic anhydride) were used as the hydrophilic and hydrophobic blocks, respectively, in forming amphiphilic diblock copolymers. Four different types of polymers methoxy poly(ethylene glycol‐ b‐1,3‐bis(p‐carboxyphenoxy)propane) (mPEG5000CPP, mPEG2000CPP), methoxy poly(ethylene glycol‐b‐1,6‐bis(p‐carboxyphenoxy)hexane) (mPEG5000CPH, mPEG2000CPH) were synthesized via melt condensation approach. Micelles were formed at very low polymer concentration with stable hydrophobic cores. The particle sizes of micelles remained stable during degradation period. All four different polymeric micelles showed low cytotoxicity toward human fibroblasts cells and can kill cancer cells in very low concentrations. High loading efficiency and drug content were observed in curcumin‐loaded micelles. Curcumin showed mild initial burst (30% of drug loading in the first 24 h) when released from the micelles and its release was sustained for at least 18 days. These micelles, especially those of mPEG5000CPP, show potential to serve as the delivery vehicles for sustained release of curcumin. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011.  相似文献   

18.
Bulk polymerization of ?‐caprolactone (CL), 1,4‐dioxan‐2‐one (PDX), and mixtures of PDX and CL was carried out by initiation with Al(OsecBu)3 in a co‐rotating twin‐screw extruder through a fast single‐step process. Both homopolymerizations and copolymerization of PDX and CL proceed very rapidly and reach almost complete (co)‐ monomer(s) conversion as soon as 8 mol% of CL are added in the feed. Even though poly(1,4‐dioxan‐2‐one) (PPDX) is known to thermally degrade mainly through unzipping depolymerization promoted from the hydroxyl end‐groups and yielding PDX monomer, it turns out that the thermal stability of PPDX chains is substantially improved by the copolymerization of PDX with limited amounts of CL. Interestingly, DSC analysis of the so‐obtained P(PDX‐co‐CL) copolymers has demonstrated that a CL molar fraction as high as 11 mol% does not prevent the crystallization of the resulting copolymer, which retains a melting temperature close to 95°C. This last observation has been explained by the formation of a blocky‐like copolymer structure, in which short PPDX and PCL sequences are randomly distributed. POLYM. ENG. SCI., 45:622–629, 2005. © 2005 Society of Plastics Engineers.  相似文献   

19.
Poly(ethylene glycol)‐poly(L ‐lactide) diblock and triblock copolymers were prepared by ring‐opening polymerization of L ‐lactide with poly(ethylene glycol) methyl ether or with poly(ethylene glycol) in the presence of stannous octoate. Molecular weight, thermal properties, and crystalline structure of block copolymers were analyzed by 1H‐NMR, FTIR, GPC, DSC, and wide‐angle X‐ray diffraction (WAXD). The composition of the block copolymer was found to be comparable to those of the reactants. Each block of the PEG–PLLA copolymer was phase separated at room temperature, as determined by DSC and WAXD. For the asymmetric block copolymers, the crystallization of one block influenced much the crystalline structure of the other block that was chemically connected to it. Time‐resolved WAXD analyses also showed the crystallization of the PLLA block became retarded due to the presence of the PEG block. According to the biodegradability test using the activated sludge, PEG–PLLA block copolymer degraded much faster than PLLA homopolymers of the same molecular weight. © 1999 John Wiley amp; Sons, Inc. J Appl Polym Sci 72: 341–348, 1999  相似文献   

20.
A series of poly(ether–ester) copolymers were synthesized from poly(2,6 dimethyl‐1,4‐phenylene oxide) (PPO) and poly(ethylene terephthalate) (PET). The synthesis was carried out by two‐step solution polymerization process. PET oligomers were synthesized via glycolysis and subsequently used in the copolymerization reaction. FTIR spectroscopy analysis shows the coexistence of spectral contributions of PPO and PET on the spectra of their ether–ester copolymers. The composition of the poly(ether–ester)s was calculated via 1H NMR spectroscopy. A single glass transition temperature was detected for all synthesized poly(ether–ester)s. Tg behavior as a function of poly(ether–ester) composition is well represented by the Gordon‐Taylor equation. The molar masses of the copolymers synthesized were calculated by viscosimetry. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci, 2006  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号