首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Transmission electron forward scatter diffraction and other characterization techniques were used to investigate the fine structure and the variant relationship of the martensite/austenite (M/A) constituent of the granular bainite in low‐carbon low‐alloy steel. The results demonstrated that the M/A constituents were distributed in clusters throughout the bainitic ferrite. Lath martensite was the main component of the M/A constituent, where the relationship between the martensite variants was consistent with the Nishiyama–Wassermann orientation relationship and only three variants were found in the M/A constituent, suggesting that the variants had formed in the M/A constituent according to a specific mechanism. Furthermore, the Σ3 boundaries in the M/A constituent were much longer than their counterparts in the bainitic ferrite region. The results indicate that transmission electron forward scatter diffraction is an effective method of crystallographic analysis for nanolaths in M/A constituents.  相似文献   

2.
We report the effects of varying specimen thickness on the generation of transmission Kikuchi patterns in the scanning electron microscope. Diffraction patterns sufficient for automated indexing were observed from films spanning nearly three orders of magnitude in thickness in several materials, from 5 nm of hafnium dioxide to 3 μm of aluminum, corresponding to a mass‐thickness range of ~5 to 810 μg cm–2. The scattering events that are most likely to be detected in transmission are shown to be very near the exit surface of the films. The energies, spatial distribution and trajectories of the electrons that are transmitted through the film and are collected by the detector are predicted using Monte Carlo simulations.  相似文献   

3.
Study on recrystallization of deformed metal is important for practical industrial applications. Most of studies about recrystallization behavior focused on the migration of the high‐angle grain boundaries, resulting in lack of information of the kinetics of the low angle grain boundary migration. In this study, we focused on the migration of the low angle grain boundaries during recrystallization process. Pure nickel deformed by shot peening which induced plastic deformation at the surface was investigated. The surface of the specimen was prepared by mechanical polishing using diamond slurry and colloidal silica down to 0.02 μm. Sequential heat treatment under a moderate annealing temperature facilitates to observe the migration of low angle grain boundaries. The threshold energy for low angle boundary migration during recrystallization as a function of misorientation angle was evaluated using scanning electron microscopy techniques. A combination of electron channeling contrast imaging and electron backscatter diffraction was used to measure the average dislocation density and a quantitative estimation of the stored energy near the boundary. It was observed that the migration of the low angle grain boundaries during recrystallization was strongly affected by both the stored energy of the deformed matrix and the misorientation angle of the boundary. Through the combination of electron channeling contrast imaging and electron backscatter diffraction, the threshold stored energy for the migration of the low angle grain boundaries was estimated as a function of the boundary misorientation.  相似文献   

4.
There is strong interest in lithium imaging, particularly because of its significance in battery materials. However, light atoms only scatter electrons weakly and atomic resolution direct imaging of lithium has proven difficult. This paper explores theoretically the conditions under which lithium columns can be expected to be directly visible using annular bright field scanning transmission electron microscopy. A detailed discussion is given of the controllable parameters and the conditions most favourable for lithium imaging.  相似文献   

5.
We explore the dynamics of image formation in the so-called annular bright field mode in scanning transmission electron microscopy, whereby an annular detector is used with detector collection range lying within the cone of illumination, i.e. the bright field region. We show that this imaging mode allows us to reliably image both light and heavy columns over a range of thickness and defocus values, and we explain the contrast mechanisms involved. The role of probe and detector aperture sizes is considered, as is the sensitivity of the method to intercolumn spacing and local disorder.  相似文献   

6.
A model-based method is proposed to relatively quantify the chemical composition of atomic columns using high angle annular dark field (HAADF) scanning transmission electron microscopy (STEM) images. The method is based on a quantification of the total intensity of the scattered electrons for the individual atomic columns using statistical parameter estimation theory. In order to apply this theory, a model is required describing the image contrast of the HAADF STEM images. Therefore, a simple, effective incoherent model has been assumed which takes the probe intensity profile into account. The scattered intensities can then be estimated by fitting this model to an experimental HAADF STEM image. These estimates are used as a performance measure to distinguish between different atomic column types and to identify the nature of unknown columns with good accuracy and precision using statistical hypothesis testing. The reliability of the method is supported by means of simulated HAADF STEM images as well as a combination of experimental images and electron energy-loss spectra. It is experimentally shown that statistically meaningful information on the composition of individual columns can be obtained even if the difference in averaged atomic number Z is only 3. Using this method, quantitative mapping at atomic resolution using HAADF STEM images only has become possible without the need of simultaneously recorded electron energy loss spectra.  相似文献   

7.
Convergent beam electron diffraction and geometric phase analysis were used to measure strain in the gate channel of a p-type strained silicon metal-oxide-semiconductor field-effect transistor. These measurements were made on exactly the same transmission electron microscopy specimen allowing for direct comparison of the relative advantages of each technique. The trends in the strain values show good agreement in both the [110] and [001] directions, but the absolute strain values are offset from each other. This difference in the absolute strain measured using the two techniques is attributed to the way the reference strain is defined for each.  相似文献   

8.
A scanning transmission electron microscope (STEM) produces a convergent beam electron diffraction pattern at each position of a raster scan with a focused electron beam, but recording this information poses major challenges for gathering and storing such large data sets in a timely manner and with sufficient dynamic range. To investigate the crystalline structure of materials, a 16×16 analog pixel array detector (PAD) is used to replace the traditional detectors and retain the diffraction information at every STEM raster position. The PAD, unlike a charge-coupled device (CCD) or photomultiplier tube (PMT), directly images 120–200 keV electrons with relatively little radiation damage, exhibits no afterglow and limits crosstalk between adjacent pixels. Traditional STEM imaging modes can still be performed by the PAD with a 1.1 kHz frame rate, which allows post-acquisition control over imaging conditions and enables novel imaging techniques based on the retained crystalline information. Techniques for rapid, semi-automatic crystal grain segmentation with sub-nanometer resolution are described using cross-correlation, sub-region integration, and other post-processing methods.  相似文献   

9.
We investigate Ar ion‐milling rates and Ga‐ion induced damage on sample surfaces of Si and GaAs single crystals prepared by focused ion beam (FIB) method for transmission electron microscopy observation. The convergent beam electron diffraction technique with Bloch simulation is used to measure the thickness of the Ar‐ion milled samples to calculate the milling rates of Si and GaAs single crystals. The measurement shows that an amorphous layer is formed on the sample surface and can be removed by further Ar‐ion milling. In addition, the local symmetry breaking induced by FIB is investigated using quantitative symmetry measurement. The FIBed‐GaAs sample shows local symmetry breaking after FIB milling, although the FIBed‐Si sample has no considerable symmetry breaking.  相似文献   

10.
Since semiconductor structures are becoming smaller and smaller, the examination methods must also take this development into account. Optical methods have long reached their limits here, but small dimensions are also a challenge for electron beam techniques, especially when it comes to determining optical properties. In this paper, electron microscopic methods of investigating optical properties are discussed. Special attention is given to the physical limits and how to deal with them. We will cover electron energy loss spectrometry as well as cathodoluminescence spectrometry. We pay special attention to inelastic delocalisation, radiation damage, the Čerenkov effect, interference effects of optical excitations and higher diffraction orders on a grating analyser for the cathodoluminescence signal.  相似文献   

11.
We present an integrated light‐electron microscope in which an inverted high‐NA objective lens is positioned inside a scanning electron microscope (SEM). The SEM objective lens and the light objective lens have a common axis and focal plane, allowing high‐resolution optical microscopy and scanning electron microscopy on the same area of a sample simultaneously. Components for light illumination and detection can be mounted outside the vacuum, enabling flexibility in the construction of the light microscope. The light objective lens can be positioned underneath the SEM objective lens during operation for sub‐10 μm alignment of the fields of view of the light and electron microscopes. We demonstrate in situ epifluorescence microscopy in the SEM with a numerical aperture of 1.4 using vacuum‐compatible immersion oil. For a 40‐nm‐diameter fluorescent polymer nanoparticle, an intensity profile with a FWHM of 380 nm is measured whereas the SEM performance is uncompromised. The integrated instrument may offer new possibilities for correlative light and electron microscopy in the life sciences as well as in physics and chemistry.  相似文献   

12.
Electron tomography requires a wide angular range of specimen-tilt for a reliable three-dimensional (3D) reconstruction. Although specimen holders are commercially available for tomography, they have several limitations, including tilting capability in only one or two axes at most, e.g. tilt-rotate. For amorphous specimens, the image contrast depends on mass and thickness only and the single-tilt holder is adequate for most tomographic image acquisitions. On the other hand, for crystalline materials where image contrast is strongly dependent on diffraction conditions, current commercially available tomography holders are inadequate, because they lack tilt capability in all three orthogonal axes needed to maintain a constant diffraction condition over the whole tilt range. We have developed a high-angle triple-axis (HATA) tomography specimen holder capable of high-angle tilting for the primary horizontal axis with tilting capability in the other (orthogonal) horizontal and vertical axes. This allows the user to trim the specimen tilt to obtain the desired diffraction condition over the whole tilt range of the tomography series. To demonstrate its capabilities, we have used this triple-axis tomography holder with a dual-axis tilt series (the specimen was rotated by 90° ex-situ between series) to obtain tomographic reconstructions of dislocation arrangements in plastically deformed austenitic steel foils.  相似文献   

13.
Mendis BG  Craven AJ 《Ultramicroscopy》2011,111(3):212-226
A method for extracting core and shell spectra from core-shell particles with varying core to shell volume fractions is described. The method extracts the information from a single EELS spectrum image of the particle. The distribution of O and N was correctly reproduced for a nanoparticle with a TiN core and Ti-oxide shell. In addition, the O distribution from a nanoparticle with a Cu core and a Cu-oxide shell was obtained, and the extracted Cu L2,3-core and shell spectra showed the required change in EELS near edge fine structure. The extracted spectra can be used for multiple linear least squares fitting to the raw data in the spectrum image. The effect of certain approximations on numerical accuracy, such as treating the nanoparticle as a perfect sphere, as well as the intrinsic detection limits of the technique have also been explored. The technique is most suitable for qualitative, rather than quantitative, work.  相似文献   

14.
A new approach for preparing geological materials is proposed to reduce charging during their characterization in a scanning electron microscope. This technique was applied to a sample of the Nechalacho rare earth deposit, which contains a significant amount of the minerals fergusonite and zircon. Instead of covering the specimen surface with a conductive coating, the sample was immersed in a dilute solution of ionic liquid and then air dried prior to SEM analysis. Imaging at a wide range of accelerating voltages was then possible without evidence of charging when using the in‐chamber secondary and backscattered electrons detectors, even at 1 kV. High resolution x‐ray and electron backscatter diffraction mapping were successfully obtained at 20 and 5 kV with negligible image drifting and permitted the characterization of the microstructure of the zircon/fergusonite‐Y aggregates encased in the matrix minerals. Because of the absence of a conductive layer at the surface of the specimen, the Kikuchi band contrast was improved and the backscatter electron signal increased at both 5 and 20 kV as confirmed by Monte Carlo modeling. These major developments led to an improvement of the spatial resolution and efficiency of the above characterization techniques applied to the rare earth ore and it is expected that they can be applied to other types of ores and minerals. Microsc. Res. Tech. 77:225–235, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

15.
In this study, we investigate the functional behaviour of the intensity in high‐angle annular dark field scanning transmission electron micrograph images. The model material is a silica particle (20 nm) gel at 5 wt%. By assuming that the intensity response is monotonically increasing with increasing mass thickness of silica, an estimate of the functional form is calculated using a maximum likelihood approach. We conclude that a linear functional form of the intensity provides a fair estimate but that a power function is significantly better for estimating the amount of silica in the z‐direction. The work adds to the development of quantifying material properties from electron micrographs, especially in the field of tomography methods and three‐dimensional quantitative structural characterization from a scanning transmission electron micrograph. It also provides means for direct three‐dimensional quantitative structural characterization from a scanning transmission electron micrograph.  相似文献   

16.
Ultra-fast pattern acquisition of electron backscatter diffraction and offline indexing could become a dominant technique over online electron backscatter diffraction to investigate the microstructures of a wide range of materials, especially for in situ experiments or very large scans. However, less attention has been paid to optimize the parameters related to ultra-fast electron backscatter diffraction. The present results show that contamination on a clean and unmounted specimen is not a problem even at step sizes as small as 1 nm at a vacuum degree of 6.1 × 10(-5) Pa. There exists an optimum step size at about 50 data acquisition board units. A new and easy method to calculate the effective spatial resolution is proposed. Effective spatial resolution tends to increase slightly as the probe current increases from 10 to 100 nA. The fraction of indexed points decreases slightly as the frame rate increases from 128 patterns per second (pps) to 835 pps by compensating the probe current at the same ratio. The value 96 × 96 is found to be the optimum pattern resolution to obtain optimum speed and image quality. For a fixed position of electron backscatter diffraction detector, the fraction of indexed points as a function of working distance has a maximum value and drops sharply by shortening the working distance and it decreases slowly with increasing the working distance.  相似文献   

17.
One of the well-proven and efficient methods of obtaining a very low-energy impact of primary electrons in the scanning electron microscope is to introduce a retarding field element below the pole piece of the objective lens (OL). It is advantageous to use the specimen alone as the negatively biased electrode (i.e., cathode of the cathode lens). The optical power of the cathode lens modifies some of the standard parameters of the image formation such as relation of working distance to OL excitation or magnification to the scanning coils current, the impact angle of primary electrons, and so forth. In computer-controlled electron microscopes these parameters, particularly with regard to focusing and magnification, can be corrected automatically. Derivation of algorithms for such corrections and their experimental verifications are presented in this paper. Furthermore, a more accurate analytical expression for the focal length of an aperture lens is derived.  相似文献   

18.
The evolution of hydrogen from many hydrated cryo‐preserved soft materials under electron irradiation in the transmission electron microscope can be observed at doses of the order of 1000 e nm?2 and above. Such hydrogen causes artefacts in conventional transmission electron microscope or scanning transmission electron microscopy (STEM) imaging as well as in analyses by electron energy‐loss spectroscopy. Here we show that the evolution of hydrogen depends on specimen thickness. Using wedge‐shaped specimens of frozen‐hydrated Nafion, a perfluorinated ionomer, saturated with the organic solvent DMMP together with both thin and thick sections of frozen‐hydrated porcine skin, we show that there is a thickness below which hydrogen evolution is not detected either by bubble observation in transmission electron microscope image mode or by spectroscopic analysis in STEM electron energy‐loss spectroscopy mode. We suggest that this effect is due to the diffusion of hydrogen, whose diffusivity remains significant even at liquid nitrogen temperature over the length scales and time scales relevant to transmission electron microscopy analysis of thin specimens. In short, we speculate that sufficient hydrogen can diffuse to the specimen surface in thin sections so that concentrations are too low for bubbling or for spectroscopic detection. Significantly, this finding indicates that higher electron doses can be used during the imaging of radiation‐sensitive hydrated soft materials and, consequently, higher spatial resolution can be achieved, if sufficiently thin specimens are used in order to avoid the evolution of hydrogen‐based artefacts.  相似文献   

19.
When polymorphonuclear leukocytes (PMNs) phagocytose opsonised zymosan particles (OPZ), free radicals and reactive oxygen species (ROS) are formed in the phagosomes. ROS production is mediated by NADPH oxidase (Nox), which transfers electrons in converting oxygen to superoxide (O2?). Nox‐generated O2? is rapidly converted to other ROS. Free radical‐forming secretory vesicles containing the Nox redox center flavocytochrome b558, a membrane protein, and azurophil granules with packaged myeloperoxidase (MPO) have been described. Presuming the probable fusion of these vesicular and granular organelles with phagosomes, the translation process of the enzymes was investigated using energy‐filtering and energy‐dispersive spectroscopy‐scanning transmission electron microscopy. In this work, the primary method for imaging cerium (Ce) ions demonstrated the localisation of H2O2 generated by phagocytosing PMNs. The MPO activity of the same PMNs was continuously monitored using 0.1% 3,3′‐diaminobenzidine‐tetrahydrochloride (DAB) and 0.01% H2O2. A detailed view of these vesicular and granular structures was created by overlaying each electron micrograph with pseudocolors: blue for Ce and green for nitrogen (N).  相似文献   

20.
In a previous paper, a new technique was introduced to determine the chemistry of crystallographically well‐defined planar defects (such as straight interfaces, grain boundaries, twins, inversion or antiphase domain boundaries) in the presence of homogeneous solute segregation or selective doping. The technique is based on a linear least‐squares fit using series of analytical (electron energy‐loss or energy‐dispersive X‐ray) spectra acquired in a transmission electron microscope that is operated in nano‐probe mode with the planar defect centred edge‐on. First, additional notes on the use of proper k‐factors and determination of Gibbsian excess segregation are given in this note. Using simulated data sets, it is shown that the linear least‐squares fit improves both the accuracy and the robustness to noise beyond that obtainable by independently repeated measurements. It is then shown how the method originally developed for a stationary nano‐probe mode in transmission electron microscopy can be extended to a focused electron beam that scans a square region in scanning transmission electron microscopy. The necessary modifications to scan geometry and corresponding numerical evaluation are described, and three different practical implementations are proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号