首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Globally, dams and water extractions are well‐recognised disruptors of flow regimes in floodplain wetlands, but little is known of the hydrological and ecological impacts of floodplain earthworks constructed for irrigation, flood mitigation and erosion control. We mapped the distribution of earthworks with high‐resolution SPOT (Système Probatoire d'Observation de la Terre) imagery in an internationally recognised Ramsar wetland, the Macquarie Marshes of the Murray–Darling Basin, Australia. There were 339 km levees, 1648 km channels, 54 off‐river storages and 664 tanks (0.5–5 m high), detected within the 4793 km2 floodplain study area. Earthworks reduced localised flooding compared with undeveloped sites. The most pronounced disconnection of the original floodplain (73.0%) occurred where earthworks were most concentrated compared with areas with few earthworks (53.2%). We investigated relationships between hydrological connectivity and mortality of the perennial flood‐dependent river red gum Eucalyptus camaldulensis at 55 floodplain sites (225 × 150 m). Over half of the river red gums were dead at 21.8% of the sites. Earthworks blocked surface flows to flood‐dependent vegetation and drowned vegetation in artificially inundated off‐river storages. Mortality was due to impacts of earthworks and potentially exacerbated by effects of river regulation, water extraction and climate. River red gums were healthiest in narrow river corridors where earthworks confined flows and flows could recede freely. Rehabilitation of flood‐dependent ecosystems should focus on reinstating lateral connectivity and protecting environmental flows. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

2.
The dynamic nature of alluvial floodplain rivers is a function of flow and sediment regimes interacting with the physiographic features and vegetation cover of the landscape. During seasonal inundation, the flood pulse forms a ‘moving littoral’ that traverses the plain, increasing productivity and enhancing connectivity. The range of spatio-temporal connectivity between different biotopes, coupled with variable levels of natural disturbance, determine successional patterns and habitat heterogeneity that are responsible for maintaining the ecological integrity of floodplain river systems. Flow regulation by dams, often compounded by other modifications such as levee construction, normally results in reduced connectivity and altered successional trajectories in downstream reaches. Flood peaks are typically reduced by river regulation, which reduces the frequency and extent of floodplain inundation. A reduction in channel-forming flows reduces channel migration, an important phenomenon in maintaining high levels of habitat diversity across floodplains. The seasonal timing of floods may be shifted by flow regulation, with major ramifications for aquatic and terrestrial biota. Truncation of sediment transport may result in channel degradation for many kilometres downstream from a dam. Deepening of the channel lowers the water-table, which affects riparian vegetation dynamics and reduces the effective base level of tributaries, which results in rejuvenation and erosion. Ecological integrity in floodplain rivers is based in part on a diversity of water bodies with differing degrees of connectivity with the main river channel. Collectively, these water bodies occupy a wide range of successional stages, thereby forming a mosaic of habitat patches across the floodplain, This diversity is maintained by a balance between the trend toward terrestrialization and flow disturbances that renew connectivity and reset successional sequences. To counter the influence of river regulation, restoration efforts should focus on reestablishing dynamic connectivity between the channel and floodplain water bodies.  相似文献   

3.
Hydrologic connectivity between the channel and floodplain is thought to be a dominant factor determining floodplain processes and characteristics of floodplain forests. We explored the role of hydrologic connectivity in explaining floodplain forest community composition along streams in northern Missouri, USA. Hydrologic analyses at 20 streamgages (207–5827 km2 area) document that magnitudes of 2‐year return floods increase systematically with increasing drainage area whereas the average annual number and durations of floodplain‐connecting events decrease. Flow durations above the active‐channel shelf vary little with increasing drainage area, indicating that the active‐channel shelf is in quasi‐equilibrium with prevailing conditions. The downstream decrease in connectivity is associated with downstream increase in channel incision. These relations at streamflow gaging stations are consistent with regional channel disturbance patterns: channel incision increases downstream, whereas upstream reaches have either not incised or adjusted to incision by forming new equilibrium floodplains. These results provide a framework to explain landscape‐scale variations in composition of floodplain forest communities in northern Missouri. Faust ( 2006 ) had tentatively explained increases of flood‐dependent tree species, and decreases of species diversity, with a downstream increase in flood magnitude and duration. Because frequency and duration of floodplain‐connecting events do not increase downstream, we hypothesize instead that increases in relative abundance of flood‐dependent trees at larger drainage area result from increasing size of disturbance patches. Bank‐overtopping floods at larger drainage area create large, open, depositional landforms that promoted the regeneration of shade‐intolerant species. Higher tree species diversity in floodplains with small drainage areas is associated with non‐incised floodplains that are frequently connected to their channels and therefore subject to greater effective hydrologic variability compared with downstream floodplains. Understanding the landscape‐scale geomorphic and hydrologic controls on floodplain connectivity provides a basis for more effective management and restoration of floodplain forest communities. Published 2013. This article is a U.S. Government work and is in the public domain in the USA.  相似文献   

4.
An understanding of the factors controlling the permanent and episodic links between the main stem of a river and the ecosystems of its alluvial floodplain is necessary for evaluating the influence of modern river processes on floodplain ecology and habitat diversity and for the successful implementation of flow regimes that meet human needs for water in a manner that sustains the ecological integrity of affected systems. In this study, we examined relationships between river hydrology and lateral hydrological connectivity, which is crucial to directing fluxes of water, material, and organisms into and across a floodplain. We did so by translating measures of river discharge for the Congaree River into high resolution maps of flood conditions for the floodplain at Congaree National Park using a 2D flood inundation model. Utilizing a graph network approach, we then analyzed the connectivity of a key wetland ecosystem, Taxodium‐Nyssa forested swamps, to the main stem river and to each other under different flows. Our results underscore that floodplain connectivity is initiated at sub‐bankfull discharges and does not depend on levee overtopping, while also clarifying that various sources of connectivity are triggered at different flow levels in specific reaches. Further, our findings demonstrate the sensitive and non‐linear response of floodplain connectivity to river flows and provide useful information to facilitate the management of flood processes in the Congaree River watershed. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

5.
Historical trends in hydrology, geomorphology, and floodplain vegetation provide fundamental contexts for designing future management of large rivers, an area of fluvial research extensively informed by studies of historical channel dynamics. Changes in hydrology, channel structure, floodplain forests, and large wood were documented for the 273‐km main stem of the Willamette River from 1850 to present. Reduced sediment supply and frequency and magnitude of floods have decreased channel mobility and incised channels, leading to fewer gravel bars, islands, and side channels. Human alteration of channel morphology, vegetation, and bank hardening has exacerbated channel simplification caused by reductions in floods, sediment supply, and inputs of wood. A substantial number of floodplain channels reoccupied remnants of previous active channels inundated during recent floods, demonstrating functional but often forgotten role of historical geomorphic structure in modern floodplains and flood processes. In most reaches, area of floodplain forests in 1990 was only 10% to 25% of the area of forests in 1850. Abundance of wood in the wetted channel was generally greater in reaches with higher abundances of floodplain forests. Future trajectories will be influenced by legacies of the historical river but increasingly will reflect evolution of a new river shaped by human development, changing climate, and emerging hydrogeomorphic and vegetation processes. Understanding historical characteristics and anticipating future rates and patterns of ecosystem change provide fundamental contexts for restoring biophysical processes and structure in a large floodplain river.  相似文献   

6.
Based on detailed historical surveys from 1812, the natural riverine landscape of a 10.25‐km‐long reach of the Danube River in the Austrian Machland region prior to channelization is analysed. Anthropogenically induced changes of fluvial dynamics, hydrological connectivity and aquatic habitat composition are discussed, comparing the situations following channelization (1925) and flow regulation (1991). In 1812 the alluvial river–floodplain system of the Danube River comprised a highly complex channel network, numerous gravel bars and extensive islands, with the main channel and side arms (eupotamon) representing about 97% of the entire water surface at low flow. The floodplain was characterized by relatively flat terrain and numerous natural trenches (former active channels) connected to the main channel. These hydromorphological conditions led to marked expansion/contraction of the water surface area at water level fluctuations below bankfull (‘flow pulse’). The high degree of hydrological connectivity enabled intensive exchange processes and favoured migrations of aquatic organisms between the river and floodplain habitats over a period of approximately 90 days per year. Overall in 1812, 57% of the active zone (active channels and floodplain) was inundated at bankfull water level. Channelization and construction of hydropower plants resulted in a truncated fluvial system. Consequently, eupotamal water bodies decreased by 65%, and gravel/sand bars and vegetated islands decreased by 94% and 97%, respectively, whereas the area of the various backwaters doubled. In 1991 the former ‘flow pulse’ was halved due to artificial levees and embankments, greatly diminishing hydrological connectivity and decoupling large areas of the floodplain from the main channel. Active overflow, formerly playing an important role, is now replaced by backwater flooding and seepage inflow in isolated water bodies. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

7.
淤滩与刷槽之间没有必然的联系   总被引:1,自引:0,他引:1  
齐璞  高航  孙赞盈  彭红 《人民黄河》2005,27(10):16-18
实测资料与动床摸型试验均表明,在洪水过程中淤滩与刷槽虽然同时发生,但它们之间并没有必然的联系。在多沙河流上洪水漫滩必然会造成滩地淤积,并在滩唇形成自然堤,阻断滩槽水流交换;主槽的冲刷发生在涨水期,在落水期不管含沙量大小,河床均处于淤积状态。漫滩后的清水在滩地上流动缓慢,远远小于主槽水流的运动速度,因此漫滩水往往在落水期才能汇入主槽,且只能起到减少主槽淤积的作用,无法改变由于洪水的非恒定性形成的落水期河床必然淤积的状态。实测资料表明,含沙量100~200 kg/m3的不漫滩洪水在涨水期仍可造成主槽的强烈冲刷。  相似文献   

8.
In dry ecoregions, trees are restricted to river valley floodplains where river water supplements the limited local precipitation. Around the Northern Hemisphere, cottonwoods, riparian poplars, are often predominant trees in floodplain forests and these ecological specialists require floods that create and saturate sand and gravel bars, enabling seedling recruitment. By pairing the interpretation of aerial photographs at approximately decade intervals with dendrochronology, we explored the coordination between river floods, geomorphic disturbance and colonization of plains cottonwoods (Populus deltoides) over eight meanders along the Red Deer River in the semi‐arid prairie of western Canada. This river has a relatively natural flow regime and minimal human alteration through the World Heritage Site of Dinosaur Provincial Park. We found that the 50‐year flood of 1954 increased channel migration and produced extensive accretion with downstream expansion of meander lobes and some channel infilling, which was followed by prolific cottonwood colonization. Those processes accompanied the major flood, while bank erosion and cottonwood losses were more gradual and continuous over the past half‐century. Results indicated even greater floodplain and woodland development after an earlier 100‐year flood in 1915. Each flood produced an arcuate band of mature cottonwoods and there were five to seven progressively older woodland bands across the floodplain, with each cottonwood age grouping increasing by about a half‐century. The 700 m wide floodplain was progressively reworked by the river through pulses of channel movement and floodplain and woodland development over approximately 250 years and correspondingly, the oldest cottonwoods were about 250 years old.  相似文献   

9.
This study examines the character of developing anabranched channel networks on the River Wear, north England, using metre‐scale aerial LiDAR. DSM‐DTM interpretation reveals a well‐developed vegetation structure and a locally diverse terrain, dominated by an interlinked channel network split by low‐elevation depositional areas with the gross morphology of the reach resembling that of a strongly active meandering/wandering channel suggesting that an anabranching network may develop within systems that were initially active meandering and wandering, evolving in line with floodplain vegetative succession. Utilization of the LiDAR DEM in the hydrological component of the CAESAR‐Lisflood (version 1.4) morphodynamic model has generated local hydraulic variable estimates through the anabranched reaches for a range of flows. These data clearly demonstrate how elevated flows are transferred out of the primary channel and distributed along the interconnected secondary channel network, creating a diverse set of hydraulic environments. Areas between the channels rapidly become inundated as flows increase, dissipating flow energy. Shear stress estimates throughout the study site reveal a generally reduced ability to mobilize sediments and erode channel margins, in comparison with a single‐thread reach immediately downstream. Anabranched secondary channels appear to operate in disequilibrium and act predominantly as aggradational zones, although with some evidence of scour at channel bifurcation and confluence points. It would appear that the topographic character of anabranching sites efficiently manages flood flow energy, activating secondary channels and low‐elevation areas to distribute flood flows. These findings contrast with the hydraulic data from an adjacent single‐thread reach, characterized by flood flows concentrated in‐channel creating a high erosive potential. We propose that anabranching rivers could play an important role in natural flood and sediment management in many U.K. river systems.  相似文献   

10.
根据泥沙动床模型试验结果,探讨了黄河下游不同洪水洪峰流量下断面的冲淤及形态响应、洪峰含沙量对河槽塑造过程中水流运动、泥沙冲淤、主槽形态及过流输沙能力影响等问题,研究结果表明,断面响应与洪峰流量大小、历时、来沙系数及初始断面形态有关,大漫滩与一般漫滩洪峰流量对断面塑造特性有明显的不同,弯顶断面和顺直断面具有不同的冲淤特性,研究得到大漫滩、一般漫滩及不漫滩洪峰流量下断面的响应模式,建立了典型断面形态参数对一般漫滩及不漫滩洪峰流量下水量、来沙系数参数响应的经验关系式.  相似文献   

11.
为了摸清水系连通性衰退的成因,本文通过引入水系连通性指标和推求河道水力几何关系,深入分析了水系连通性的连通机理和影响因素.结果表明河道纵向连通性取决于河道来水来沙条件与边界形态,侧向连通性取决于河道分汇流比及分汇流区的水流流态和冲淤形态,河道横向连通包括河道滩槽并存、洪水期滩槽水沙交换以及水生植物的传播,主要是通过洪水...  相似文献   

12.
Understanding temporal trophic interactions in riverine food webs is essential for predicting river ecosystem function and improving management of these ecosystems. Temporal changes in energy flows through riverine food webs are readily assumed but are rarely tested. Temporal variability in food webs from two reaches of a lowland river (Ovens River, south‐eastern Australia) with differing levels of floodplain connectivity were examined over 12 months. We investigated how seasonal changes, flow variability and floodplain connectivity influence (i) stable isotope signatures of basal organic carbon sources (terrestrial sources: trees and grasses; aquatic sources: seston, biofilm and filamentous algae) and consumers (macroinvertebrates and fish) and (ii) the relative proportions of organic carbon sources contributing to consumer biomass using mixing models. We hypothesized (i) that during high flows, increased floodplain connectivity would increase the lateral exchange of terrestrial carbon subsidies to main channel consumers and (ii) that during low flow periods, main channel consumers would derive the majority of their carbon from aquatic benthic sources. Results indicated that isotope signatures for basal sources and for most of the consumers varied temporally and spatially. Mixing models indicated that increased floodplain connectivity did not increase terrestrial subsidies to consumers during high flows. Seston was the primary source during high flows whilst terrestrial vegetation increased in importance during low flows. Filamentous algae was also important during low flows for some consumers. These findings indicate that it is essential to include temporal variability in order to understand energy flows in lowland rivers, thus allowing for the dynamic nature of these ecosystems. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

13.
In floodplain ecosystems, the lateral hydrological connectivity between the main river channel and the secondary channels plays a major role in shaping both the habitat conditions and the macroinvertebrate diversity. Among other threats, human activities tend to reduce the lateral connectivity, which increases floodplain terrestrialization and induces a loss of aquatic biodiversity. Consequently, the restoration of lateral connectivity is of growing concern. We studied four secondary channels of the Rhône floodplain that were subjected either to no restoration or to three different restoration measures (river flow increase only, flow increase plus dredging and flow increase plus reconnection to the river). Macroinvertebrate and environmental data were analysed one year before and during a period of five years after restoration. We expected a progressive increase of lateral connectivity according to the type of restoration. Changes in macroinvertebrate assemblages were predicted to be towards more rheophilic communities and proportionally related to the changes in lateral connectivity. In the reconnected channel, lateral connectivity increased and remained high five years after restoration. In the dredged channel, the immediate increase of the lateral connectivity metric induced by sediment removal was followed by a rapid decrease. In the unrestored channel and the channel only influenced by flow increase, the metric remained constant in time. The macroinvertebrate composition and the rarefied EPT richness changes were proportionally related to the changes in lateral connectivity. Alien species richness and densities increased progressively in all channels after restoration. Our results showed that modifications of the lateral connectivity lead to predictable changes in macroinvertebrate diversity. Synergistic interactions between restoration and longer‐term changes (e.g. climatic change, invasion of alien species) encourage long‐term monitoring to assess the durability and trends of restoration measures. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

14.
钟放平 《人民长江》1994,25(11):33-37
湘江自注视河口分为东西两支进入洞庭湖,西支是湘江的入湖分洪道,该航线上的刘家坝滩是有名的碍航浅滩,每年都要清淤疏浚,为确定整治方案,进行了包括东西两支的河工模型试验,通过河床演变,水流动力轴线与床面切应力及泥沙输移路线的分析,采用的具体措施是依据河势,结合中,洪水主动力轴线的方向,将整治线规划成左凹右凸的微变形态,拆除右岸顺坝,在左岸布置5座丁坝,利用疏浚土加高右岸遗留的下边滩和填塞原过航槽及下深  相似文献   

15.
Most of the large rivers are heavily degraded and lack near‐natural conditions due to high human pressure (agricultural use and settlements) especially on former inundation areas. Hence, it is rarely possible to ‘restore’ predisturbance conditions of rivers and their floodplains. Further, river or floodplain restoration programs are often based on type‐specific reference conditions. Those reference conditions are mainly determined on the basis of historical maps not giving any information of, for example, sediment supply, flood frequency and vegetation cover (density). Especially for improving the ecological status of rivers with abandoned channel features, key habitats for target fish species have to be restored by reconnecting floodplains and their secondary channel system. In addition, because of the necessity of improving the ecological status, there is growing interest in interdisciplinary river restoration techniques. Within the presented article, an integrative concept is derived based on Light Detection and Ranging measurements and numerical modelling with respect to river dynamics (hydrologic and morphological). Further habitat modelling, based on unsteady depth‐averaged two‐dimensional hydrodynamics, is applied with a focus on the mesounit scale. For testing the conceptual model, various river reaches at the Morava River were selected, featuring different morphological characteristics. It was found that the applied management concept allows considering the important issues of river dynamics (morphological/hydrologic) using a flow‐ and flood‐pulse approach for identifying bottlenecks of target species at the Morava River. The reconnection of abandoned channels will result in an increase of hydromorphological heterogeneity and/or woody debris within the study reach. This might be of high relevance for habitat features (e.g. backwater habitats) especially for flow pulses between low flow and mean flow and/or in reaches without abandoned channels between low‐flow and the bankfull stage. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

16.
复式河槽的洪水漫滩后,滩槽水流相互作用,在滩槽交界处形成动量交换,若直接采用曼宁公式进行水力计算将产生很大误差。应用CES(Conveyance Estimation System)模型首先计算了不同复式河槽的垂线平均流速,并结合英国科学工程研究理事会洪水水槽设备(SERC-FCF)的试验资料进行了验证,进而分析了不同形态复式河槽的水流特性;然后通过对比分析CES模型与经验方法(湿周修正法、断面分割法)和理论方法(谢汉祥法、刘沛清法、河槽协同度法)计算流量时的精度,论证了该模型在复式河槽水力计算中的优越性。结果表明,由CES模型计算的断面垂线平均流速分布符合复式河槽的水流特性且与实测资料吻合良好,较之其他模型方法,该模型能适用于任意形态复式河槽的流量计算且精度较高。  相似文献   

17.
在大洪水期行洪滞洪沉沙是黄河下游宽滩区的主要功能之一。近十几年来,随着黄河水沙的变化和小浪底水库的建成运用,对宽滩区运用方式的争论更为激烈,却一直缺乏系统的对比研究。为此,黄科院利用小浪底至陶城铺河道实体模型,采用2013年汛前地形,开展了黄河下游宽滩区是否修建防护堤两种不同运用方式下,大洪水期的洪水演进试验,通过对比分析不同运用方式下的下游河道在冲淤演变、洪水位变化和滩区防洪安全等方面的问题,探讨了大洪水条件下黄河下游河道冲淤及滩区的安全形势,以期为黄河下游河道治理措施的决策提供科学的参考依据。结果表明,宽滩区修建防护堤后,中常高含沙洪水条件下主槽淤积量小于不修防护堤方案,大洪水条件下主槽冲刷量大于不修防护堤方案,说明主槽过流能力和输沙能力均有所增大。但是,修建防护堤后的嫩滩淤积量,两种洪水条件下均呈现出明显大于不修防护堤方案,河道的横断面形态和"二级悬河"形势均有所恶化。同时,由于目前地形条件下夹河滩以上河段主河槽过流能力达到了6 000m3/s,洪水向下游的演进速度和水量明显增加,导致高村以下的洪水位比不修防护堤时显著提升,增大了高村以下河段的防洪压力,滩区的防洪安全受到严重威胁。  相似文献   

18.
利用黄河下游高村至孙口河段漫滩洪水观测资料 ,分析了过渡型河段漫滩洪水演进规律及其影响因素 .结果表明 :过渡型河段河槽弯曲 ,滩地多、面积大、连通性差 ,在险工、护滩控导工程控制下 ,主槽相对稳定 ,河道横向淤积分布不均 ,主槽冲淤变化大 ,滩地低洼、蓄滞洪能力大 .滩地蓄滞洪能力、主槽排洪能力与不同量级不同类型洪水的不同组合 ,是造成漫滩洪水洪峰流量削减、洪峰形状变形、传播时间变化的主要原因  相似文献   

19.
对于黄河下游治理方略的几点建议   总被引:1,自引:0,他引:1  
张仁 《人民黄河》2004,26(5):1-2
二级悬河是黄河下游防洪的心腹之患,必须改变当前槽高滩低的局面,消除二级悬河,才能使黄河下游成为一条有健康生命的河流。只有通过废除生产堤,才能利用大自然的力量,较快、较好地消除二级悬河的严峻现状。要废除生产堤,首先要搞好滩区的安全建设。在此前提下,建议改变小浪底水库的运用方式:拦蓄大洪水,不拦蓄中小洪水;排泄浑水,不排泄清水;汛期水库少量蓄水,做到拦粗排细;允许洪水漫滩,实现漫滩刷槽,利用滩地处理大部分来沙。  相似文献   

20.
黄河下游游荡性河道水位涨率偏大的主要影响因素分析   总被引:1,自引:1,他引:0  
认为影响黄河下游游荡性河道水位涨率的因素是多方面的 ,河宽只是其中的原因之一。利用黄河下游花园口、夹河滩等水文站历次实测大洪水测流断面资料 ,计算了各水文断面不同槽宽的水位流量关系。在洪水涨水阶段 ,同样的流量涨幅 ,等河宽的平均河底高程变化 ,河南河道和山东河道没有明显差别 ,但河南河道的比降是山东河道的 2倍 ,同河宽的水位涨率必然小于山东河道。对游荡性河道已发生的几场水位涨率偏大的原因作了分析 ,认为游荡性河道十分宽浅 ,河势摆动频繁 ,大洪水时形成顶冲、局部壅水 ,它对水位涨率的影响远大于河宽缩窄的影响 ;复式河槽在洪水漫滩后 ,由于滩槽水流的动量交换 ,引起主槽的阻力增大 ,也是导致水位涨率增大的重要原因。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号