首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
With the recent FDA approval of the first siRNA‐derived therapeutic, RNA interference (RNAi)‐mediated gene therapy is undergoing a transition from research to the clinical space. The primary obstacle to realization of RNAi therapy has been the delivery of oligonucleotide payloads. Therefore, the main aims is to identify and describe key design features needed for nanoscale vehicles to achieve effective delivery of siRNA‐mediated gene silencing agents in vivo. The problem is broken into three elements: 1) protection of siRNA from degradation and clearance; 2) selective homing to target cell types; and 3) cytoplasmic release of the siRNA payload by escaping or bypassing endocytic uptake. The in vitro and in vivo gene silencing efficiency values that have been reported in publications over the past decade are quantitatively summarized by material type (lipid, polymer, metal, mesoporous silica, and porous silicon), and the overall trends in research publication and in clinical translation are discussed to reflect on the direction of the RNAi therapeutics field.  相似文献   

2.
Conventional chemotherapy shows moderate efficiency against metastatic cancer since it targets only part of the mechanisms regulating tumor growth and metastasis. Here, gold nanorod (GNR)‐based host‐guest nanoplatforms loaded with docetaxel (DTX) and small interfering RNA (siRNA)‐p65 (referred to as DTX‐loaded GNR (GDTX)/p65) for chemo‐, RNA interference (RNAi), and photothermal ablation (PTA) cooperative treatment of metastatic breast cancer are reported. To prepare the nanoplatform, GNRs are first coated with cyclodextrin (CD)‐grafted polyethylenimine (PEI) and then loaded with DTX and siRNA through host–guest interaction with CD and electrostatic interaction with PEI, respectively. Upon near‐infrared laser irradiation, GNRs generate a significant hyperthermia effect to trigger siRNA and DTX release. DTX reduces tumor growth by inhibiting mitosis of cancer cells. Meanwhile, siRNA‐p65 suppresses lung metastasis and proliferation of cancer cells by blocking the nuclear factor kappa B (NF‐κB) pathway and downregulating the downstream genes matrix metalloproteinase‐9 (MMP‐9) and B cell lymphoma‐2 (Bcl‐2). It is demonstrated that GDTX/p65 in combination with laser irradiation significantly inhibits the growth and lung metastasis of 4T1 breast tumors. The antitumor results suggest promising potential of the host–guest nanoplatform for combinational treatment of metastatic cancer by using RNAi, chemotherapy, and PTA.  相似文献   

3.
The abilities to deliver siRNA to its intended action site and assess the delivery efficiency are challenges for current RNAi therapy, where effective siRNA delivery will join force with patient genetic profiling to achieve optimal treatment outcome. Imaging could become a critical enabler to maximize RNAi efficacy in the context of tracking siRNA delivery, rational dosimetry and treatment planning. Several imaging modalities have been used to visualize nanoparticle‐based siRNA delivery but rarely did they guide treatment planning. We report a multimodal theranostic lipid‐nanoparticle, HPPS(NIR)‐chol‐siRNA, which has a near‐infrared (NIR) fluorescent core, enveloped by phospholipid monolayer, intercalated with siRNA payloads, and constrained by apoA‐I mimetic peptides to give ultra‐small particle size (<30 nm). Using fluorescence imaging, we demonstrated its cytosolic delivery capability for both NIR‐core and dye‐labeled siRNAs and its structural integrity in mice through intravenous administration, validating the usefulness of NIR‐core as imaging surrogate for non‐labeled therapeutic siRNAs. Next, we validated the targeting specificity of HPPS(NIR)‐chol‐siRNA to orthotopic tumor using sequential four‐steps (in vivo, in situ, ex vivo and frozen‐tissue) fluorescence imaging. The image co‐registration of computed tomography and fluorescence molecular tomography enabled non‐invasive assessment and treatment planning of siRNA delivery into the orthotopic tumor, achieving efficacious RNAi therapy.  相似文献   

4.
A nanoconstruct (NC) is developed from a biocompatible natural polymer and siRNA conjugates to deliver small interfering RNA (siRNA) target‐specifically without cationic condensation reagents. This study reports a novel siRNA‐mediated cross‐linked NC produced by hybridizing two complementary single‐stranded siRNAs that are conjugated to the polymer dextran via a disulfide linkage. The reducible disulfide bond between the siRNA and polymer allow siRNA release from the NC in the reducible cytoplasmic region after the NC enters the cell. In addition, when the NC contains the prostate‐carcinoma‐binding peptide aptamer DUP‐1, it can selectively deliver siRNA into prostate cancer cells of the PC‐3 lines; thus, the newly formulated NC has reduced the cytotoxicity and improved the efficacy of target‐specific siRNA delivery. Moreover, this new concept of NCs using biocompatible siRNA and a neutral polymer may provide insightful knowledge for future directions for designing NCs for stimuli‐responsive and advanced target‐specific siRNA delivery.  相似文献   

5.
Small interfering RNA (siRNA) has been considered as a highly promising therapeutic agent for human cancer treatment including glioblastoma (GBM), which is a fatal disease without effective therapy methods. However, siRNA-based GBM therapy is seriously hampered by a number of challenges in siRNA brain delivery including poor stability, short blood circulation, low blood–brain barrier (BBB) penetration, and tumor accumulation, as well as inefficient siRNA intracellular release. Herein, an Angiopep-2 (Ang) functionalized intracellular-environment-responsive siRNA nanocapsule (Ang-NCss(siRNA)) is successfully developed as a safe and efficient RNAi agent to boost siRNA-based GBM therapy. The experimental results demonstrate that the developed Ang-NCss(siRNA) displays long circulation in plasma, efficient BBB penetration capability, and GBM accumulation and retention, as well as responsive intracellular siRNA release due to the unique design of small size (25 nm) with polymeric shell for siRNA protection, Ang functionalization for BBB crossing and GBM targeting, and disulfide bond as a linker for intracellular-environment-responsive siRNA release. Such superior properties of Ang-NCss(siRNA) result in outstanding growth inhibition of orthotopic U87MG xenografts without causing adverse effects, achieving remarkably improved survival benefits. The developed siRNA nanocapsules provide a new strategy for RNAi therapy of GBM and beyond.  相似文献   

6.
Molecular therapy using a small interfering RNA (siRNA) has shown promise in the development of novel therapeutics. Various formulations have been used for in vivo delivery of siRNAs. However, the stability of short double‐stranded RNA molecules in the blood and efficiency of siRNA delivery into target organs or tissues following systemic administration have been the major issues that limit applications of siRNA in human patients. In this study, multifunctional siRNA delivery nanoparticles are developed that combine imaging capability of nanoparticles with urokinase plasminogen activator receptor‐targeted delivery of siRNA expressing DNA nanocassettes. This theranostic nanoparticle platform consists of a nanoparticle conjugated with targeting ligands and double‐stranded DNA nanocassettes containing a U6 promoter and a shRNA gene for in vivo siRNA expression. Targeted delivery and gene silencing efficiency of firefly luciferase siRNA nanogenerators are demonstrated in tumor cells and in animal tumor models. Delivery of survivin siRNA expressing nanocassettes into tumor cells induces apoptotic cell death and sensitizes cells to chemotherapy drugs. The ability of expression of siRNAs from multiple nanocassettes conjugated to a single nanoparticle following receptor‐mediated internalization should enhance the therapeutic effect of the siRNA‐mediated cancer therapy.  相似文献   

7.
It is generally believed that intravenous application of cationic vectors is limited by the binding of abundant negatively charged serum components, which may cause rapid clearance of the therapeutic agent from the blood stream. However, previous studies show that systemic delivery of cationic gene vectors mediates specific and efficient transfection within the lung, mainly as a result of interaction of the vectors with serum proteins. Based on these findings, a novel and charge‐density‐controllable siRNA delivery system is developed to treat lung metastatic cancer by using cationic bovine serum albumin (CBSA) as the gene vector. By surface modification of BSA, CBSA with different isoelectric points (pI) is synthesized and the optimal cationization degree of CBSA is determined by considering the siRNA binding and delivery ability, as well as toxicity. The CBSA can form stable nanosized particles with siRNA and protect siRNA from degradation. CBSA also shows excellent abiliies to intracellularly deliver siRNA and mediate significant accumulation in the lung. When Bcl2‐specific siRNA is introduced to this system, CBSA/siRNA nanoparticles exhibit an efficient gene‐silencing effect that induces notable cancer cell apoptosis and subsequently inhibits the tumor growth in a B16 lung metastasis model. These results indicate that CBSA‐based self‐assembled nanoparticles can be a promising strategy for a siRNA delivery system for lung targeting and metastatic cancer therapy.  相似文献   

8.
Lipopolymer 49, a solid‐phase synthesized T‐shaped peptide‐like oligoamide containing two central oleic acids, 20 aminoethane, and two terminal cysteine units, is identified as very potent and biocompatible small interfering RNA (siRNA) carrier for gene silencing in glioma cells. This carrier is combined with a novel targeting polymer 727, containing a precise sequence of Angiopep 2 targeting peptide, linked with 28 monomer units of ethylene glycol, 40 aminoethane, and two terminal cysteines in siRNA complex formation. Angiopep‐polyethylene glycol (PEG)/siRNA polyplexes exhibit good nanoparticle features, effective glioma‐targeting siRNA delivery, and intracellular siRNA release, resulting in an outstanding gene downregulation both in glioma cells and upon intravenous delivery in glioma model nude mice without significant biotoxicity. Therefore, this novel siRNA delivery system is expected to be a promising strategy for targeted and safe glioma therapy.  相似文献   

9.
Chronic hepatitis B (CHB) is the most common cause of hepatocellular carcinoma (HCC) and liver cirrhosis worldwide. In spite of the numerous advances in the treatment of CHB, drugs and vaccines have failed because of many factors like complexity, resistance, toxicity, and heavy cost. New RNA interference (RNAi)‐based technologies have developed innovative strategies to target Achilles'' heel of the several hazardous diseases involving cancer, some genetic disease, autoimmune illnesses, and viral disorders particularly hepatitis B virus (HBV) infections. Naked siRNA delivery has serious challenges including failure to cross the cell membrane, susceptibility to the enzymatic digestion, and excretion by renal filtration, which ideally can be addressed by nanoparticle‐mediated delivery systems. cccDNA formation is a significant problem in obtaining HBV infections complete cure because of strength, durability, and lack of proper immune response. Nano‐siRNA drugs have a great potential to address this problem by silencing specific genes which are involved in cccDNA formation. In this article, the authors describe siRNA nanocarrier‐mediated delivery systems as a promising new strategy for HBV infections therapy. Simultaneously, the authors completely represent the clinical trials which use these strategies for treatment of the HBV infections.Inspec keywords: tumours, drugs, genetics, cellular biophysics, RNA, nanomedicine, diseases, molecular biophysics, microorganisms, cancer, liver, nanoparticles, patient treatmentOther keywords: siRNA nanotherapeutics, anti‐HBV therapy, chronic hepatitis B, CHB, HCC, hazardous diseases, cancer, genetic disease, autoimmune illnesses, viral disorders, hepatitis B virus infections, naked siRNA delivery, cell membrane, enzymatic digestion, renal filtration, nanoparticle‐mediated delivery systems, cccDNA formation, HBV infections complete cure, nanosiRNA drugs, siRNA nanocarrier‐mediated delivery systems, HBV infections therapy, liver cirrhosis, RNA interference, immune response, hepatocellular carcinoma  相似文献   

10.
The design and development of multifunctional carriers for drug delivery based on hollow nanoparticles (HNPs) have attracted intense interests. Ordinary spherical HNPs are demonstrated to be promising candidates. However, the application of HNPs with special morphologies has rarely been reported. HNPs with sharp horns are expected to own higher endocytosis efficiencies than spherical counterparts. In this work, novel starlike hollow silica nanoparticles (SHNPs) with different sizes are proposed as platforms for the fabrication of redox‐triggered multifunctional systems for synergy of gene therapy and chemotherapy. The CD‐PGEA gene vectors (consisting of β‐CD cores and ethanolamine‐functionalized poly(glycidyl methacrylate) (denoted BUCT‐PGEA) arms) are introduced ingeniously onto the surfaces of SHNPs with plentiful disulfide bond‐linked adamantine guests. The resulting supramolecular assemblies (SHNP‐PGEAs) possess redox‐responsive gatekeepers for loaded drugs in the cavities of SHNPs. Meanwhile, they also demonstrate excellent performances to deliver genes. The gene transfection efficiencies, controlled drug release behaviors, and synergistic antitumor effect of hollow silica‐based carriers with different morphologies are investigated in detail. Compared with ordinary spherical HNP‐based counterparts, SHNP‐PGEA carriers with six sharp horns are proven to be superior gene vectors and possess better efficacy for cellular uptake and antitumor effects. The present multifunctional carriers based on SHNPs will have promising applications in drug/gene codelivery and cancer treatment.  相似文献   

11.
Small interfering RNA (siRNA)-based gene therapy represents a promising strategy for tumor treatment. Novel gene vectors that can achieve targeted delivery of siRNA to the tumor cells without causing any side effects are urgently needed. To this end, the large amino acid mimicking carbon dots with guanidinium functionalization (LAAM GUA-CDs) are designed and synthesized by choosing arginine and dopamine hydrochloride as precursors. LAAM GUA-CDs can load siRNA through the multiple hydrogen bonds between their guanidinium groups and phosphate groups in siRNA. Meanwhile, the amino acid groups at the edges of LAAM GUA-CDs endow them the capacity to target tumors. After loading siBcl-2 as a therapeutic agent, LAAM GUA-CDs/siBcl-2 has a high tumor inhibition rate of up to 68%, which is twice more than that of commercial Lipofectamine 2000. Furthermore, LAAM GUA-CDs do not cause side effect during antitumor treatment owing to their high tumor-targeting ability, thus providing a versatile strategy for tumor-targeted siRNA delivery and cancer therapy.  相似文献   

12.
Co‐delivery of both chemotherapy drugs and siRNA from a single delivery vehicle can have a significant impact on cancer therapy due to the potential for overcoming issues such as drug resistance. However, the inherent chemical differences between charged nucleic acids and hydrophobic drugs have hindered entrapment of both components within a single carrier. While poly(ethylene glycol)‐block‐poly(lactic‐co‐glycolic acid) (PEG–PLGA) copolymers have been used successfully for targeted delivery of chemotherapy drugs, loading of DNA or RNA has been poor. It is demonstrated that significant amounts of DNA can be encapsulated within PLGA‐containing nanoparticles through the use of a new synthetic DNA analog, click nucleic acids (CNAs). First, triblock copolymers of PEG‐CNA‐PLGA are synthesized and then formulated into polymer nanoparticles from oil‐in‐water emulsions. The CNA‐containing particles show high encapsulation of DNA complementary to the CNA sequence, whereas PEG‐PLGA alone shows minimal DNA loading, and non‐complementary DNA strands do not get encapsulated within the PEG‐CNA‐PLGA nanoparticles. Furthermore, the dye pyrene can be successfully co‐loaded with DNA and lastly, a complex, larger DNA sequence that contains an overhang complementary to the CNA can also be encapsulated, demonstrating the potential utility of the CNA‐containing particles as carriers for chemotherapy agents and gene silencers.  相似文献   

13.
Gold nanoclusters (Au NCs) are one of the most promising fluorescent nanomaterials for bioimaging, targeting, and cancer therapy due to their tunable optical properties, yet their biocompatibility still remains unclear. Herein, the cytotoxicity of bovine serum albumin (BSA)‐stabilized Au NCs is studied by using three tumor cell lines and two normal cell lines. The results indicate that Au NCs induce the decline of cell viabilities of different cell lines to varying degrees in a dose‐ and time‐dependent manner, and umbilical vein endothelial cells which had a higher intake of Au NCs than melanoma cells show more toxicity. Addition of free BSA to BSA‐Au NCs solutions can relieve the cytotoxicity, implying that BSA can prevent cell damage. Moreover, Au NCs increase intracellular reactive oxygen species (ROS) production, further causing cell apoptosis. Furthermore, N‐acetylcysteine, a ROS scavenger, partially reverses Au NCs‐induced cell apoptosis and cytotoxicity, indicating that ROS might be one of the primary reasons for the toxicity of BSA‐Au NCs. Surprisingly, Au NCs with concentrations of 5 and 20 nM significantly inhibit tumor growth in the xenograft mice model of human liver cancer, which might provide a new avenue for the design of anti‐cancer drug delivery vehicles.  相似文献   

14.
Ribonucleic acid (RNA) interference (RNAi) therapies are promising cancer treatment modalities that can specifically target abnormal proto-oncogenes, thus improving the therapeutic effect. For the treatment of pancreatic cancer, targeting one mutant proto-oncogene by RNAi usually does not yield the desired therapeutic efficiency. Both K-ras gene mutations and Notch1 overexpression are common symptoms in pancreatic cancer patients, and play a crucial role in pancreatic cancer cell drug resistance. In this study, biodegradable charged polyester-based vectors (BCPVs) were synthesized for the co-delivery of K-ras and Notch1 small interfering ribonucleic acid (siRNA) into MiaPaCa-2 cells (pancreatic cancer cell line) to overcome drug resistance to gemcitabine (GEM), a first-line chemotherapeutic drug used in the clinic. BCPVs could effectively absorb negative siRNA to form a capsule-like structure, prevent siRNA from nuclease digestion in the serum, and promote effective siRNA cell internalization and endosomal escape. Through K-ras and Notch1 gene silencing in MiaPaCa-2 cells, BCPV-siRNAK-ras-siRNANotch1 nanocomplexes effectively reversed the epithelia-mesenchymal transition (EMT) in MiaPaCa-2 cells, thereby greatly enhancing the sensitivity of MiaPaCa-2 cells to GEM. MiaPaCa-2 cell proliferation, migration, and invasion were effectively inhibited, and cell apoptosis was also significantly enhanced by the synergistic antitumor effect of BCPV-siRNAK-ras-siRNANotch1 nanocomplexes and GEM. These results suggest that this combination RNAi therapy can be used to improve cancer cell sensitivity to chemotherapeutic drugs. Specifically, this newly developed strategy has a great potential for treating pancreatic cancer.
  相似文献   

15.
Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest malignant tumors with extremely poor prognosis due to the later stage diagnosis when surgical resection is no longer applicable. Alternatively, the traditional gene therapy which drives pancreatic cancer cells into an inactive state and inhibiting the proliferation and metastasis, presents potentials to safely inhibit pancreatic cancer progression, but unfortunately has received limited success to date. Here, an efficient gene therapy of pancreatic cancer is shown via a peptide nucleic acid (PNA)‐loaded layered double hydroxides (LDHs) nanoplatform. Compared with the traditional DNA‐ or RNA‐based gene therapies, the gene therapy using PNA features great advantages in recognizing and hybridizing with the target mutant sequences to form PNA–DNA hybrids with significantly enhanced stability due to the absence of electrostatic repulsion, and the constrained flexibility of the polyamide backbone. Moreover, ultrasmall LDHs are engineered to load PNA and the obtained PNA‐loaded LDH platform (LDHs/PNA) is capable of efficiently and selectively targeting the intranuclear mutant sequences thanks to the proton sponge effect. Treatments with LDHs/PNA demonstrate markedly inhibited growth of pancreatic cancer xenografts via a cancer cell proliferation suppression mechanism. The results demonstrate the great potentials of LDHs/PNA as a highly promising gene therapy agent for PDAC.  相似文献   

16.
Small interfering RNA (siRNA) is an attractive therapeutic candidate for sequencespecific gene silencing to treat incurable diseases using small molecule drugs.However,its efficient intracellular delivery has remained a challenge.Here,we have developed a highly biocompatible fluorescent carbon dot (CD),and demonstrate a functional siRNA delivery system that induces efficient gene knockdown in vitro and in vivo.We found that CD nanoparticles (NPs) enhance the cellular uptake of siRNA,via endocytosis in tumor cells,with low cytotoxicity and unexpected immune responses.Real-time study of fluorescence imaging in live cells shows that CD NPs favorably localize in cytoplasm and successfully release siRNA within 12 h.Moreover,we demonstrate that CD NP-mediated siRNA delivery significantly silences green fluorescence protein (GFP) expression and inhibits tumor growth in a breast cancer cell xenograft mouse model of tumor-specific therapy.We have developed a multi functional siRNA delivery vehicle enabling simultaneous bioimaging and efficient downregulation of gene expression,that shows excellent potential for gene therapy.  相似文献   

17.
Small interfering RNA (siRNA) offers a highly selective and effective pharmaceutical for various life‐threatening diseases, including cancers. The clinical translation of siRNA is, however, challenged by its short plasma life, poor cell uptake, and cumbersome intracellular trafficking. Here, cNGQGEQc peptide‐functionalized reversibly crosslinked chimaeric polymersomes (cNGQ/RCCPs) is shown to mediate high‐efficiency targeted delivery of Polo‐like kinase1 specific siRNA (siPLK1) to orthotopic human lung cancer in nude mice. Strikingly, siRNA is completely and tightly loaded into the aqueous lumen of the polymersomes at an unprecedentedly low N/P ratio of 0.45. cNGQ/RCCPs loaded with firefly luciferase specific siRNA (siGL3) or siPLK1 are efficiently taken up by α3β1‐integrin‐overexpressing A549 lung cancer cells and quickly release the payloads to the cytoplasm, inducing highly potent and sequence‐specific gene silencing in vitro. The in vivo studies using nude mice bearing orthotopic A549 human lung tumors reveal that siPLK1‐loaded cNGQ/RCCPs boost long circulation, superb tumor accumulation and selectivity, effective suppression of tumor growth, and significantly improved survival time. These virus‐mimicking chimaeric polymersomes provide a robust and potent platform for targeted cancer siRNA therapy.  相似文献   

18.
Therapeutics based on small interfering RNAs (siRNAs) offer a great potential to treat so far incurable diseases or metastatic cancer. However, the broad application of siRNAs using various nonviral carrier systems is hampered by unspecific toxic side effects, poor pharmacokinetics due to unwanted delivery of siRNA‐loaded nanoparticles into nontarget organs, or rapid renal excretion. In order to overcome these obstacles, several targeting strategies using chemically linked antibodies and ligands have emerged. This study reports a new modular polyplex carrier system for targeted delivery of siRNA, which is based on transfection‐disabled maltose‐modified poly(propyleneimine)‐dendrimers (mal‐PPI) bioconjugated to single chain fragment variables (scFvs). To achieve targeted delivery into tumor cells expressing the epidermal growth factor receptor variant III (EGFRvIII), monobiotinylated anti‐EGFRvIII scFv fused to a Propionibacterium shermanii transcarboxylase‐derived biotinylation acceptor (P‐BAP) is bioconjugated to mal‐PPI through a novel coupling strategy solely based on biotin–neutravidin bridging. In contrast to polyplexes containing an unspecific control scFv‐P‐BAP, the generated EGFRvIII‐specific polyplexes are able to exclusively deliver siRNA to tumor cells and tumors by receptor‐mediated endocytosis. These results suggest that receptor‐mediated uptake of otherwise noninternalized mal‐PPI‐based polyplexes is a promising avenue to improve siRNA therapy of cancer, and introduce a novel strategy for modular bioconjugation of protein ligands to nanoparticles.  相似文献   

19.
Using small interfering RNA (siRNA) to regulate gene expression is an emerging strategy for stem cell manipulation to improve stem cell therapy. However, conventional methods of siRNA delivery into stem cells based on solution‐mediated transfection are limited due to low transfection efficiency and insufficient duration of cell‐siRNA contact during lengthy culturing protocols. To overcome these limitations, a bio‐inspired polymer‐mediated reverse transfection system is developed consisting of implantable poly(lactic‐co‐glycolic acid) (PLGA) scaffolds functionalized with siRNA‐lipidoid nanoparticle (sLNP) complexes via polydopamine (pDA) coating. Immobilized sLNP complexes are stably maintained without any loss of siRNA on the pDA‐coated scaffolds for 2 weeks, likely due to the formation of strong covalent bonds between amine groups of sLNP and catechol group of pDA. siRNA reverse transfection with the pDA‐sLNP‐PLGA system does not exhibit cytotoxicity and induces efficient silencing of an osteogenesis inhibitor gene in human adipose‐derived stem cells (hADSCs), resulting in enhanced osteogenic differentiation of hADSCs. Finally, hADSCs osteogenically committed on the pDA‐sLNP‐PLGA scaffolds enhanced bone formation in a mouse model of critical‐sized bone defect. Therefore, the bio‐inspired reverse transfection system can provide an all‐in‐one platform for genetic modification, differentiation, and transplantation of stem cells, simultaneously enabling both stem cell manipulation and tissue engineering.  相似文献   

20.
Many candidate anticancer drugs have suffered from their intrinsic hydrophobicity, which poses several obstacles for clinical application. To overcome this challenge and further improve the performance, herein a nanocrystal‐based biomimetic formulation with a sandwich structure is developed. As the core, flake shaped nanocrystals (NCs) with high loading of the hydrophobic drug hydroxycamptothecin (HCPT) are synthesized via a mild nanoprecipitation process by exploring the template effect of serum albumin. Meanwhile, the camouflaged cancer cell membrane (CM) composed of plentiful membrane proteins endows the NCs with homotypic targeting capacity at tumor sites. In addition, the photosensitizer indocyanine green sandwiched between NCs and CM not only converts near infrared light to heat for photothermal treatment but also improves the dissolution of HCPT NCs for chemotherapy. These features corporately achieve the orchestration of chemo‐photothermal combination therapy and completely inhibit tumor growth with few adverse effects, showing promise as a new modality for the utilization of hydrophobic drugs to treat cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号