首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This article analyzes the simultaneous control of several correlated Poisson variables by using the Variable Dimension Linear Combination of Poisson Variables (VDLCP) control chart, which is a variable dimension version of the LCP chart. This control chart uses as test statistic, the linear combination of correlated Poisson variables in an adaptive way, i.e. it monitors either p1 or p variables (p1 < p) depending on the last statistic value. To analyze the performance of this chart, we have developed software that finds the best parameters, optimizing the out‐of‐control average run length (ARL) for a shift that the practitioner wishes to detect as quickly as possible, restricted to a fixed value for in‐control ARL. Markov chains and genetic algorithms were used in developing this software. The results show performance improvement compared to the LCP chart. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

2.
There has been a growing interest in monitoring processes featuring serial dependence and zero inflation. The phenomenon of excessive zeros often occurs in count time series because of the advancement of quality in manufacturing process. In this study, we propose three control charts, such as the cumulative sum chart with delay rule (CUSUM‐DR), conforming run length (CRL)‐CUSUM chart, and combined Shewhart CRL‐CUSUM chart, to enhance the performance of monitoring Markov counting processes with excessive zeros. Numerical experiments are conducted based on integer‐valued autoregressive time series models, for example, zero‐inflated Poisson INAR and INARCH, to evaluate the performance of the proposed charts designed for the detection of mean increase. A real example is also illustrated to demonstrate the usability of our proposed charts.  相似文献   

3.
Control charts are effective tools for signal detection in manufacturing processes. As much of the data in industries come from processes having non‐normal or unknown distributions, the commonly used Shewhart variable control charts cannot be appropriately used, because they depend heavily on the normality assumption. The average run length (ARL) is generally used to measure the detection performance of a process when using a control chart, but it is biased for the monitoring statistic with an asymmetric distribution. That is, the ARL‐biased control chart leads to take longer to detect the shifts in parameter than to trigger a false alarm. To overcome this problem, we herein propose an ARL‐unbiased exponentially weighted moving average proportion (EWMA‐p) chart to monitor the process variance for process data with non‐normal or unknown distributions. We further explore the procedure to determine the control limits and to investigate the out‐of‐control variance detection performance of the ARL‐unbiased EWMA‐p chart. With a numerical example involving non‐normal service times from a bank branch in Taiwan, we illustrate the applications of the proposed ARL‐unbiased EWMA‐p chart and also compare the out‐of‐control detection performance of the ARL‐unbiased EWMA‐p chart, the arcsin transformed symmetric EWMA variance, and other existing variance charts. The proposed ARL‐unbiased EWMA‐p chart shows superior detection performance. Thus, we recommend the ARL‐unbiased EWMA‐p chart for process data with non‐normal or unknown distributions. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

4.
The times between events control charts have been proposed in literature for statistical monitoring of high‐yield processes by observing the waiting times up to r th (r ≥ 1  ) non‐conforming items or defects. The average run length (ARL) is the most widely used performance measure to evaluate the chart's performance, but in recent years, it has been subjected to criticisms. Because the run length distribution is highly skewed and hence, the ARL is not necessarily a typical value of the run length. Thus, evaluation of the control chart based on ARL alone could be misleading. In this paper, the quantiles of run length distribution are considered, instead of ARL, to design the tr ‐chart. Further, we eliminate the bias in q th quantile function of the tr ‐chart for both the known and unknown parameter case. In particular, the MRL‐unbiased tr ‐chart is discussed in detail and compared with the ARL‐unbiased tr ‐chart. It is found that the MRL‐unbiased tr ‐chart outperforms than the corresponding ARL‐unbiased chart in unknown parameter case. It is also found that the proposed chart requires less phase I observations than that of the earlier studies has been suggested.  相似文献   

5.
In this paper, we propose a new process control chart for monitoring correlated Poisson variables, the EWMA LCP chart. This chart is the exponentially weighted moving average (EWMA) version of the recently proposed LCP chart. The latter is a Shewhart-type control chart whose control statistic is a linear combination of the values of the different Poisson variables (elements of the Poisson vector) at each sampling time. As a Shewhart chart, it is effective at signalling large process shifts but is slow to signal smaller shifts. EWMA charts are known to be more sensitive to small and moderate shifts than their Shewhart-type counterparts, so the motivation of the present development is to enhance the performance of the LCP chart by the incorporation of the EWMA procedure to it. To ease the design of the EWMA LCP chart for the end user, we developed a user-friendly programme that runs on Windows© and finds the optimal design of the chart, that is, the coefficients of the linear combination as well as the EWMA smoothing constant and chart control limits that together minimise the out-of-control ARL under a constraint on the in-control ARL. The optimization is carried out by genetic algorithms where the ARLs are calculated through a Markov chain model. We used this programme to evaluate the performance of the new chart. As expected, the incorporation of the EWMA scheme greatly improves the performance of the LCP chart.  相似文献   

6.
The performance of attribute control charts that monitor Markov‐dependent data is usually evaluated under the assumption of known process parameters, that is, known values of a the probability an item is nonconforming given the previous item is conforming and b the probability an item is conforming given the previous item is nonconforming. In practice, these parameters are usually not known and are calculated from an in‐control Phase I‐data set. In this paper, a comparison of the in‐control ARL (average run length) properties of the attribute chart for Markov‐dependent data with known and estimated parameters is presented. The probability distribution of the estimators is developed and used to calculate the in‐control ARL and standard deviation of the run length of the chart with estimated parameters. For particular values of a and b, the in‐control ARL values of the charts with estimated parameters may be very different than those with known parameters. The size of the Phase‐I data set needed for charts with estimated parameters to exhibit the same in‐control ARL properties as those with known parameters may vary widely depending on the parameters of the process, but in general, large samples are needed to obtain accurate estimates. As the Phase‐I sample size increases, the in‐control ARL values of the charts with estimated parameters approach that of the known parameter case but not in a monotonic fashion as in the case of the X‐bar chart. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

7.
This paper investigates economic–statistical properties of the X? charts supplemented with m‐of‐m runs rules. An out‐of‐control condition for the chart is either a point beyond a control limit or a run of m‐of‐m successive points beyond a warning limit. The sampling process is modeled by a Markov chain with 2m states. The steady‐state probability for each state and the average run length (ARL) from each state of the Markov chain are derived in explicit formulas. Then the stationary average run length (SALR) is derived so as to develop an economic–statistical model. Using this model, the design parameters are optimized by minimizing the cost function with constraints on the average time to signal (ATS). The X? chart supplemented with m‐of‐m runs rules is compared with the Shewhart X? chart in terms of the SARL and the cost function. Sensitivity of the design parameters with respect to the cost function is also analyzed. General guidelines for implementing the X? chart with m‐of‐m runs rules are presented from those observations. It should be emphasized that supplementing run rules may provide feasible and efficient solutions even if the sample size is limited, while the Shewhart X? chart may not. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
We evaluate the performance of the Crosier's cumulative sum (C‐CUSUM) control chart when the probability distribution parameters of the underlying quality characteristic are estimated from Phase I data. Because the average run length (ARL) under estimated parameters is a random variable, we study the estimation effect on the chart performance in terms of the expected value of the average run length (AARL) and the standard deviation of the average run length (SDARL). Previous evaluations of this control chart were conducted while assuming known process parameters. Using the Markov chain and simulation approaches, we evaluate the in‐control performance of the chart and provide some quantiles for its in‐control ARL distribution under estimated parameters. We also compare the performance of the C‐CUSUM chart to that of the ordinary CUSUM (O‐CUSUM) chart when the process parameters are unknown. Our results show that large number of Phase I samples are required to achieve a quite reasonable performance. Additionally, the performance of the C‐CUSUM chart is found to be superior to that of the O‐CUSUM chart. Finally, we recommend the use of a recently proposed bootstrap procedure in designing the C‐CUSUM chart to guarantee, at a certain probability, that the in‐control ARL will be of at least the desired value using the available amount of Phase I data. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

9.
Because of digitalization, many organizations possess large datasets. Furthermore, measurement data are often not normally distributed. However, when samples are sufficiently large, the central limit theorem may be used for the sample means. In this article, we evaluate the use of the central limit theorem for various distributions and sample sizes, as well as its effects on the performance of a Shewhart control chart for these large non‐normally distributed datasets. To this end, we use the sample means as individual observations and a Shewhart control chart for individual observations to monitor processes. We study the unconditional performance, expressed as the expectation of the in‐control average run length (ARL), as well as the conditional performance, expressed as the probability that the control chart based on estimated parameters will have a lower in‐control ARL than a specified desired in‐control ARL. We use recently developed factors to correct the control limits to obtain a specified conditional or unconditional in‐control performance. The results in this paper indicate that the control chart should be applied with caution, even with large sample sizes.  相似文献   

10.
In recent years, there has been a growing interest in the control of autocorrelated count data. Existing results focus on the Poisson integer‐valued autoregressive (INAR) process, but this process cannot deal with overdispersion (variance is greater than mean), which is a common phenomenon in count data. We propose to control the autocorrelated count data based on a new geometric INAR (NGINAR) process, which is an alternative to the Poisson one. In this paper, we use the combined jumps chart, the cumulative sum chart, and the combined exponentially weighted moving average chart to detect the shift of parameters in the process. We compare the performance of these charts for the case of an underlying NGINAR(1) process in terms of the average run lengths. One real example is presented to demonstrate good performances of the charts. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

11.
Control charts are commonly evaluated in terms of their average run length (ARL). However, since run length distributions are typically strongly skewed, the ARL gives a very limited impression about the actual run length performance. In this study, it is proposed to evaluate a control chart's performance using risk metrics, specifically the value at risk and the tail conditional expectation. When a control chart is evaluated for an in‐control performance, the risk is an early occurrence of a false alarm, whereas in an out‐of‐control state, there is a risk of a delayed detection. For these situations, risk metric computations are derived and exemplified for diverse types of control charts. It is demonstrated that the use of such risk metrics leads to important new insights into a control chart's performance. In addition to the cases of known process parameters for control chart design, these risk metrics are further used to analyze the estimation uncertainty in evaluating a control chart's performance if the design parameters rely on a phase 1 analysis. Benefits of the risk‐based metrics are discussed thoroughly, and these are recommended as supplements to the traditional ARL metric.  相似文献   

12.
The S2 chart has been known as a powerful tool to monitor the variability of the normal process. When the variance of the process is unknown, it needs to be estimated by Phase I samples. It is well known that there are serious effects of parameter estimation on the performance of the S2 chart based on known parameter assumption. If the effects of parameter estimation are not considered, it can lead to an increase in the number of false alarms and a reduction in the ability of the chart to detect process changes except for very small shifts in the variance. Based on the criterion of average run length (ARL) unbiased, a S2 control chart is developed when the in‐control variance is estimated. The performance of the proposed control chart is also evaluated in terms of the ARL and standard deviation of the run length. Finally, an example is used to illustrate the proposed control chart. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

13.
It is known that control charts based on equal tail probability limits are ARL biased when the distribution of the plotted statistic is skewed. This is the case for p‐Charts that serve to monitor processes on the basis of the binomial distribution. For the particular case of the standard three‐sigma Shewhart p‐Chart, which is built on the basis of the binomial to normal distribution approximation, this ARL‐biased condition is particularly severe, and it greatly affects its monitoring capability. Surprisingly, in spite of this, the standard p‐Chart is still widely used and taught. Through a literature search, it was identified that several, simple to use, improved alternative p‐Charts had been proposed over the years; however, at first instance, it was not possible to determine which of them was the best. In order to identify the alternative that excelled, an ARL performance comparison was carried out in terms of their ARL bias severity level (ARLBSL) and their In‐Control ARL (ARL0). The results showed that even the best performing alternative charts would often be ARL‐biased or have nonoptimal ARL0. To improve on the existing alternatives, the “Kmod p‐Chart” was developed; it offers easiness of use, superior ARL performance, and a simple and effective method for verifying its ARL‐bias condition.  相似文献   

14.
A zero‐inflated Poisson (ZIP) process is different from a standard Poisson process in that it results in a greater number of zeros. It can be used to model defect counts in manufacturing processes with occasional occurrences of non‐conforming products. ZIP models have been developed assuming that random shocks occur independently with probability p, and the number of non‐conformities in a product subject to a random shock follows a Poisson distribution with parameter λ. In our paper, a control charting procedure using a combination of two cumulative sum (CUSUM) charts is proposed for monitoring increases in the two parameters of the ZIP process. Furthermore, we consider a single CUSUM chart for detecting simultaneous increases in the two parameters. Simulation results show that a ZIP‐Shewhart chart is insensitive to shifts in p and smaller shifts in λ in terms of the average number of observations to signal. Comparisons between the combined CUSUM method and the single CUSUM chart show that the latter's performance is worse when there are only increases in p, but better when there are only increases in λ or when both parameters increase. The combined CUSUM method, however, is much better than the single CUSUM chart when one parameter increases while the other decreases. Finally, we present a case study from the light‐emitting diode packaging industry. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

15.
In this paper, we propose a new variable control chart under type II or failure‐censored reliability tests by assuming that the lifetime of a part follows the Weibull distribution with fixed and stable shape parameter. The purpose is to monitor the mean and the variance of a Weibull process. In fact, the mean and the variance are related to the scale parameter. The necessary measures are given to calculate the average run length (ARL) for in‐control and shifted processes. The tables of ARLs are presented for various shift constants and specified parameters. A simulation study is given to show the performance of the proposed control chart. The efficiency of the proposed control chart is compared with a control chart based on the conditional expected value under type II censoring. An example is also given for the illustration purpose.  相似文献   

16.
A model‐based scheme is proposed for monitoring multiple gamma‐distributed variables. The procedure is based on the deviance residual, which is a likelihood ratio statistic for detecting a mean shift when the shape parameter is assumed to be unchanged and the input and output variables are related in a certain manner. We discuss the distribution of this statistic and the proposed monitoring scheme. An example involving the advance rate of a drill is used to illustrate the implementation of the deviance residual monitoring scheme. Finally, a simulation study is performed to compare the average run length (ARL) performance of the proposed method to the standard Shewhart control chart for individuals. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

17.
Time‐between‐events control charts are commonly used to monitor high‐quality processes and have several advantages over the ordinary control charts. In this article, we present some new control charts based on the renewal process, where a class of absolutely continuous exponentiated distributions is assumed for the time between events. This class includes the generalized exponential, generalized Rayleigh, and exponentiated Pareto distributions. Although we discuss the design structure for all the mentioned distributions, our main focus will be on the generalized exponential distribution due to its practical relevance and popularity. Since the generalized exponential distribution is a generalization of the traditional exponential distribution, the new control chart is more flexible than the existing exponential time‐between‐events charts. The control chart performance is evaluated in terms of some useful measures, including the average run length (ARL), the expected quadratic loss, continuous ranked probability, and the relative ARL. The effect of parameter estimation using the maximum likelihood and Bayesian methods on the ARL is also discussed in this article. The study also presents an illustrative example and 4 case studies to highlight the practical relevance of the proposal.  相似文献   

18.
Monitoring times between events (TBE) is an important aspect of process monitoring in many areas of applications. This is especially true in the context of high‐quality processes, where the defect rate is very low, and in this context, control charts to monitor the TBE have been recommended in the literature other than the attribute charts that monitor the proportion of defective items produced. The Shewhart‐type t‐chart assuming an exponential distribution is one chart available for monitoring the TBE. The t‐chart was then generalized to the tr‐chart to improve its performance, which is based on the times between the occurrences of r (≥1) events. In these charts, the in‐control (IC) parameter of the distribution is assumed known. This is often not the case in practice, and the parameter has to be estimated before process monitoring and control can begin. We propose estimating the parameter from a phase I (reference) sample and study the effects of estimation on the design and performance of the charts. To this end, we focus on the conditional run length distribution so as to incorporate the ‘practitioner‐to‐practitioner’ variability (inherent in the estimates), which arises from different reference samples, that leads to different control limits (and hence to different IC average run length [ARL] values) and false alarm rates, which are seen to be far different from their nominal values. It is shown that the required phase I sample size needs to be considerably larger than what has been typically recommended in the literature to expect known parameter performance in phase II. We also find the minimum number of phase I observations that guarantee, with a specified high probability, that the conditional IC ARL will be at least equal to a given small percentage of a nominal IC ARL. Along the same line, a lower prediction bound on the conditional IC ARL is also obtained to ensure that for a given phase I sample, the smallest IC ARL can be attained with a certain (high) probability. Summary and recommendations are given. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

19.
The Poisson distribution assumption often arises in several industrial applications for modeling defects or nonconformities. In this work, we investigate the one- and two-sided performance of a new adaptive EWMA (exponentially weighted moving average)-type chart for monitoring Poisson count data. An appropriate discrete-state Markov chain technique is provided to compute the exact ARL (average run length) properties. Moreover, comparative studies are conducted to demonstrate the higher sensitivity of the proposed chart in the detection of shifts with various magnitudes. Advices on how to select the appropriate chart parameters are provided and an illustrative numerical example is proposed.  相似文献   

20.
The statistical learning classification techniques have been successfully applied to statistical process control problems. In this paper, we proposed a one‐sided control chart based on support vector machines (SVMs) and differential evolution (DE) algorithm to monitor a process with multivariate quality characteristics. The SVM classifier provides a continuous distance from the boundary, and the DE algorithm is used to obtain the optimal parameters of the SVM model by minimizing mean absolute error (MAE). The average run length of the proposed chart is computed using the Monte Carlo simulation approach. Several simulated cases are conducted using a multivariate normal distribution with 10 and 20 dimensions and three different process shift scenarios. In addition, we consider two non‐normal distribution cases. The ARL performance of the proposed chart is better than the distance‐based SVM chart. A real example is used to illustrate the application of the proposed control chart.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号